

September 29, 2016

CERTIFIED MAIL: 7004-2510-0004-6647-4316

Ms. Khrystie Vázquez
Project Manager
U.S. Environmental Protection Agency
City View Plaza II Building, 7th Floor, Suite 7000
#48 Rd. 165 Km. 1.2
Guaynabo, Puerto Rico 00968-8069

Re: SVE Pulsing Operations Progress Report No. 11, February to May 2016, Corrective Measure Study, Pfizer Pharmaceuticals LLC, Arecibo, Puerto Rico

Dear Ms. Vázquez:

On behalf of Pfizer Pharmaceuticals LLC please find attached the above referenced document in accordance with the requirements of the Revised Proposal for the Installation of Soil Vapor Extraction System (SVE) under a Corrective Measure Study and EPA approval letter of pulsing/cycling procedures dated April 20, 2010.

If you need additional information, please call us at your convenience.

Cordially,

José C. Agrelot, MSCE, PE

Project Officer

c: Ms. María A. Coronado, PREQB (Certified Mail 7004-2510-0004-6647-4323)

Mr. Adalberto Bosque, USEPA (via electronic mail)

Mr. William G. Gierke, Pfizer, Inc.

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11 FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

ERTEC JOB NO. E155384

Prepared for:

U.S. Environmental Protection Agency City View Plaza II Building, 7th Floor, Suite 7000 #48 Rd. 165 Km. 1.2 Guaynabo, PR 00968-8069

September 29, 2016

Prepared by:

ERTEC, PSC-Environmental Consultants (ERTEC) P.O. Box 195336 San Juan, Puerto Rico 00919-5336 Ph: (787) 792-8902 Fax: (787) 783-5555

ertec@ertecpr.com

TABLE OF CONTENTS

	PAG	ìΕ
1.0	INTRODUCTION	
2.0	BACKGROUND	. 1
3.0 3.1	SYSTEM OPERATIONOther Activities	. 2
4.0	SAMPLE COLLECTION ACTIVITIES	. 4
5.0	SUMMARY OF LABORATORY ANALYSES	. 4
6.0	SUMMARY OF DATA FROM SVE SYSTEM OPERATION	. 5
7.0 7.1 7.2	DATA REDUCTION AND INTERPRETATIONSVE System Data CalculationsRemoval Rate Calculation	. 6
8.0	SVE SYSTEM DOWNTIME AND CORRECTIVE ACTION	8
9.0 9.1	SVE PULSING/CYCLING PROGRAM EVALUATION	9

FIGURES

- 1. SVE System Location
- 2. Soil Vapor Extraction Current System Lay-Out

TABLES

- 1. Air Samples Validated Analytical Results April & May 2016
- 2. SVE Start Up Stabilization Data
- 3. SVE Operation Data
- 4. Mass Removal Extraction Wells VMW-1, VMW-2 and VMW-3C April & May 2016
- 5. SVE Stack Discharge April & May 2016
- 6. Summary of SVE Non-Pulsing Operation February 2000 to February 2010
- 7. Summary of SVE Pulsing/Cycling Operation March 2010 to May 2016

APPENDICES

- 1. Extraction and Vacuum Monitoring Wells Construction Details
- 2. Chain of Custody Documentation
- 3. Data Validation Reports
- 4. Total VOCs Cumulative Monthly Extraction

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11 FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

Date Prepared:

September 29, 2016

Period Covered:

January 20 thru May 31, 2016

Project:

Corrective Measure Study

Soil Vapor Extraction Operation & Maintenance

Pfizer Pharmaceuticals LLC

Prepared by:

José C. Agrelot, PE, MSCE

Project Officer

1.0 INTRODUCTION

This progress report contains a summary of the soil vapor extraction (SVE) pulsing/cycling operations performed during an 4-month period from January 20 through May 31, 2016 at the former Pfizer site in Arecibo, Puerto Rico. The pulsing operating period (for this reporting period) was performed from extraction wells VMW-1, VMW-2, and VMW-3C. **Figure 1** presents the location of the SVE system with extraction and vacuum monitoring wells.

This report includes, among others, the following: a description of the work performed, a summary of data collected through the above mentioned period, data interpretation, and recommendations for the operation of the SVE system, if applicable.

2.0 BACKGROUND

Pulsing/cycling operations have been performed since February 2010 (SVE shutdown to initiate the off cycle period) with progress reports submitted for the following pulsing operational periods.

- March 2010 to August 2010
- September 2010 to February 2011
- March 2011 to November 2011
- December 2011 to June 2012
- July 2012 to December 2012
- January to June 2013
- July to January 2014
- February to August 2014
- September 2014 to April 2015
- May 2015 to January 2016
- February to May 2016

3.0 SYSTEM OPERATION

For the period from January 20 thru May 31, 2016, the SVE system was performed on a two (2) months on/off basis as described below:

- January 20 to April 1, 2016 (system off for 70 days)
- April 1 to May 31, 2016 (system on for 60 days)

SVE system extraction and/or vacuum monitoring wells details are summarized in the following table:

Well ID	Well Diameter (inches)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Well Sump Interval (feet bgs)
VMW-1	2	150	145 to 150	NA
VMW-2	2	170	165 to 170	NA
VMW-3C	2	195	190 to 195	NA

Notes:

BGS Below ground surface

NA Not applicable

Well construction details diagrams for extraction and vacuum monitoring wells are included in **Appendix 1**.

SVE Pulsing Operations Progress Report No. 11
February to May 2016
Pfizer Pharmaceuticals LLC
September 29, 2016

The following data was collected from the system during pulsing/cycling operation:

- Stabilization parameters during system start up;
- Vacuum gauge, flow rate and temperature readings from SVE system and extraction wells during system start up, and at the end of operating cycle;
- Flow rate and temperature readings from stack during system start up, and at the end of operating cycle;
- Organic Vapor Analyzer (OVA) readings after the activated carbon canister during system start up, and at the end of operating cycle.

SVE system measurements were collected with the bleeder valve partially open (as during normal operations) to maintain the blower unit operating within the manufacturer's recommended temperature range. OVA readings were collected with portable OVA equipped with a photoionization detector (PID). The instrument was calibrated daily. OVA readings were collected directly from the exhaust stack (Stack) sampling port of the SVE system.

3.1 Other Activities

- February 11 and 12, 2016 Verification of SVE system components (blower, particulate filter, moisture separator, vacuum/pressure gauges). Water level and well depth measurements of extraction wells VMW-1, VMW-2, VMW-3C and SVE-1. Water with sediment measured at 199.00 feet in SVE-1 and 194.50 feet in well VWM-3C. Wells flushed with distilled water to remove sediment. No sediment found in wells VMW-1 (150.86 feet deep) and VMW-2 (170.60 feet deep). Removed water/sediment and equipment decontamination water was containerized in one 15-gallon steel drum.
- April 1, 2016 A second carbon canister unit installed at system.
- **April 5, 2016** Site visit for monitoring of system operational parameters monitoring (vacuum, pressure, temperature and flow rates).

4.0 SAMPLE COLLECTION ACTIVITIES

Vapor samples collected from each extraction well, inlet sampling port and the exhaust stack during this period were identified as described in the following table:

Date	Extraction Well Sample ID	Inlet Sample ID	Stack Sample ID	Field Duplicate ID	Trip Blank ID
01-Apr-2016	VMW-1-20 VMW-2-20 VMW-3C-20	INLET-20	STACK-20	SVE-A (duplicate of sample VMW-3C-20)	TB-040116
02-May-2016	VMW-1-21 VMW-2-21 VMW-3C-21	INLET-21	STACK-21		
31-May-2016	VMW-1-22 VMW-2-22 VMW-3C-22	INLET-22	STACK-22	SVE-A (duplicate of sample INLET-22)	TB-053116

Samples obtained during this pulsing/cycling period were collected in Summa canisters, stored and sealed in cardboard box for shipment via FedEx to Test America-Burlington in Vermont. Samples collected on May 2, 2016 were shipped on May 3, 2016 and delivered to the laboratory by FedEx on May 4, 2016. Samples collected on May 31, 2016 were shipped on June 1, 2016 and delivered at the laboratory by FedEx on June 2, 2016. Proper chain-of-custody documentation accompanied the samples to the laboratory. Copy of the chain-of-custodies is included in **Appendix 2**.

5.0 SUMMARY OF LABORATORY ANALYSES

Vapor samples collected during this pulsing/cycling period were analyzed for chloroform, carbon tetrachloride, acetone and methylene chloride following USEPA Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectometry (GC/MS)", January 1997. Laboratory deliverables were equivalent to Contract Laboratory Program Statement of Works (CLP SOWs) for organics.

SVE Pulsing Operations Progress Report No. 11 February to May 2016 Pfizer Pharmaceuticals LLC September 29, 2016

Analytical results for samples obtained during this period were validated according to EPA Region II Standard Operating Procedure (Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15," SOP HW-31, Revision 6, June, 2014). Eden Environmental, LLC from Baton Rouge, Louisiana performed the data validation.

A summary of validated analytical results for air samples collected from extraction wells VMW-1, VMW-2, and VMW-3C, INLET, and exhaust stack during this cycle operational period (April & May 2016), are provided in **Table 1**. Copies of the data validation reports are included in **Appendix 3**.

6.0 SUMMARY OF DATA FROM SVE SYSTEM OPERATION

Table 2 includes a summary of stabilization data obtained during start up of the SVE system on April 1, 2016. System stabilization parameters were collected prior to sampling activities. **Table 3** includes a summary of the operation and monitoring data (vacuum, pressure, flow rate, temperature readings from SVE system and OVA readings from exhaust stack) during extraction procedures on April & May 2016. **Figure 2** presents the SVE system lay-out.

7.0 DATA REDUCTION AND INTERPRETATION

The pulsing operating period (for this reporting period) was performed from extraction wells VMW-1, VMW-2, and VMW-3C for 60 days (1444 hours) from April 1 to May 31, 2016. SVE system was monitored on three (3) occasions during this pulsing operational period: one at the initial startup after stabilization (April 1, 2016), midoperation monitoring (May 2, 2016) and one at the end of the period prior to shutdown (May 31, 2016). A site visit was performed on April 5, 2016 to monitored system operational parameters including vacuum, pressure, temperatures and flow rate readings. The following sections include a summary of the data collected.

7.1 SVE System Data Calculations

The following parameters were calculated from the data included in **Table 3**: vacuum, average airflow rate and total airflow rate and percent of operation time compared to total operating time for extraction wells VMW-1, VMW-2 and VMW-3C. This data was calculated based on four (4) readings for extraction wells VMW-1, VMW-2, VMW-3C during operating period in April & May 2016 as summarized in **Table 3**.

The average airflow rate and vacuum was obtained by adding the flow rate and vacuum readings per monitoring and divided by the number of days in which the readings were collected. The total airflow rate was obtained by multiplying the average flow rate by the total operating hours converted to minutes. **Table 3** included the average airflow rate and total airflow rate for extraction wells VMW-1, VMW-2 and VMW-3C. A summary of these parameters for each extraction well is presented below:

April 1 to May 31, 2016 (60 days; 100% operation)

Extraction Well	Average Airflow Rate (ft³/min)	Total Airflow Rate (ft³/min)	Average Vacuum Extraction Well (in H₂O)	Average Vacuum Intake Blower (in H₂O)
VMW-1	8.53	739,039	10	
VMW-2	14.25	1,234,620	12.5	32
VMW-3C	23.11	2,002,250	17.8	

7.2 Removal Rate Calculation

The removal and emission rate is calculated using the laboratory results in milligrams per liter (mg/L) in air for each compound detected times the air flow rate. The relation used for this calculation is:

SVE Pulsing Operations Progress Report No. 11 February to May 2016 Pfizer Pharmaceuticals LLC September 29, 2016

 $R = Q \times C$

where:

R = removal rate (lbs/hr)

 $Q = air flow rate (ft^3/min; ACFM)$

C = compound concentration (mg/L)

As airflow rate and compound concentration are the only two variables in this equation, it was simplified as follows:

 $R = ft^3/min \times mg/L \times 60 min/hr \times 28.32 L/ ft^3 \times 1lbs/453.6 \times 10^3$

 $R = (ft^3/min \times mg/L)/266.95$

Where:

R

= removal rate in lbs/hr

ft³/min

air velocity measured at time of sample collection

mg/L =

detected concentration of each compound analyzed

266.95 =

constant resulting from the reduction of conversion factors in

the equation

The rate of removal in lbs/hr for each compound detected at VMW-1, VMW-2, and VMW-3C for the operating period of April & May 2016 is summarized in **Table 4**. The rate of removal in lbs/hr for each compound detected at the exhaust stack during this period is summarized in **Table 5**. The resulting data in lbs/hr of compound removed, and emitted to the atmosphere is then multiplied by 24 to obtain the estimated mass in pounds per day (lbs/day).

The daily rate of mass removal and air emissions was calculated based on the laboratory results presented in **Table 1**. **Table 4** presents the daily rate of mass removal for each compound from the SVE system during extraction procedures from wells VMW-1, VMW-2, and VMW-3C, respectively. **Table 5** presents the daily rate of emission of VOCs to the atmosphere during operation of wells VMW-1, VMW-2, and VMW-3C. These daily rates are calculated for the day samples were collected. A total amount of VOCs emitted from the exhaust stack in lbs/hr and lbs/day is included on the last two columns in **Table 5**.

The amount of VOCs removed from the subsurface through extraction wells VMW-1, VMW-2, and VMW-3C during operating period include in this report are summarized in the following tables:

April 1 to May 31, 2016 (60 days; 1444 hours)

EXTRACTION WELL	Acetone Removal (lbs)	Methylene chloride Removal (lbs)	Chloroform Removal (lbs)	CCI₄ Removal (lbs)	Total Removal (lbs)
VMW-1	0.0	0.0	0.3397	16.3222	16.6619
VMW-2	0.0	0.0	0.4488	13.6547	14.1035
VMW-3C	0.0	0.0	1.6389	47.8932	49.5321
TOTAL VOCs	0.0	0.0	2.4274	77.8701	80.2975

Approximately 80 lbs of VOCs were removed (78 lbs of which was Carbon Tetrachloride) from the subsurface through wells VMW-1, VMW-2 and VMW-3C during the period of April & May 2016, respectively. A graph depicting cumulative mass removal in lbs. versus time for total VOCs removed from the SVE system during this period are included in **Appendix 4**.

Emissions from the SVE system are below the limits established by the Puerto Rico Environmental Quality Board (PREQB) at 3 lbs/hr or 15 lbs/day as indicated in **Table 5**.

8.0 SVE SYSTEM DOWNTIME AND CORRECTIVE ACTION

The SVE system was operated on a continuous basis during the pulsing/cycling period on April & May 2016. No water was found at the air/moisture separator during these operation periods.

9.0 SVE PULSING/CYCLING PROGRAM EVALUATION

Table 6 presents a summary of SVE system operation since February 2000 until February 2010 during non-pulsing period. **Table 7** includes a summary of SVE system operation during pulsing/cycling periods from February 2010 until May 2016. These tables include VOC Mass Removal for each extraction well. Graphs indicating the total VOC monthly extraction for each well and an updated graph showing cumulative mass removed for wells VMW-1, VMW-2 and VMW-3C for steady state determination are included in **Appendix 4**. The amount of mass removed during periods of operation since February 2010 (i.e. initiation of pulsing - off cyclingperiods) from extraction wells VMW-1, VMW-2 and VMW-3C is summarized below:

Operational Month	Mass Removed (lbs)	Reporting Period				
April 2010	6.01					
June 2010	35.57	March to August 2010				
August 2010	74.53					
October 2010	59.84	Sontombor 2010 to				
December 2010	24.41	September 2010 to February 2011				
February 2011	39.83	February 2011				
April 2011	50.87					
June 2011	47.32	March to November				
August 2011	51.15	2011				
November 2011	27.80					
February 2012	34.28	December 2011 to June				
April 2012	18.83	2012				
June 2012	17.44	2012				
August 2012	120.68					
October 2012	34.43	July to December 2012				
December 2012	20.09					
February 2013	19.98					
April 2013	29.80	January to June 2013				
June 2013	45.80					
August 2013	54.55	luly 2012 to lenger:				
October 2013	2.66	July 2013 to January 2014				
Dec 2013 - Jan 2014	1.01	2014				
February-March 2014	24.84					
May 2014	112.79	February to August 2014				
August 2014	30.36					

Operational Month	Mass Removed (lbs)	Reporting Period					
October-November 2014	34.80	Contouches 2011 to Annil					
January-February 2015	85.53	September 2014 to April 2015					
April 2015	29.01	7 2015					
June 2015	10.96	May 2045 to January					
August-September 2015	14.61	May 2015 to January					
Nov-Dec 2015/Jan 2016	64.79	2016					
April-May 2016	80.30	February to May 2016					
TOTAL	1304.87						

Emissions from the SVE system are consistently below the limits of 3 lbs/hr or 15 lbs/day.

9.1 Recommendations

Based on the data obtained during this 4-month period (February to May 2016) the following is recommended:

 Continue with the pulsing operational period of 60 days off and 60 days on during 2016.

10.0 MONITORING AND SAMPLING SCHEDULE

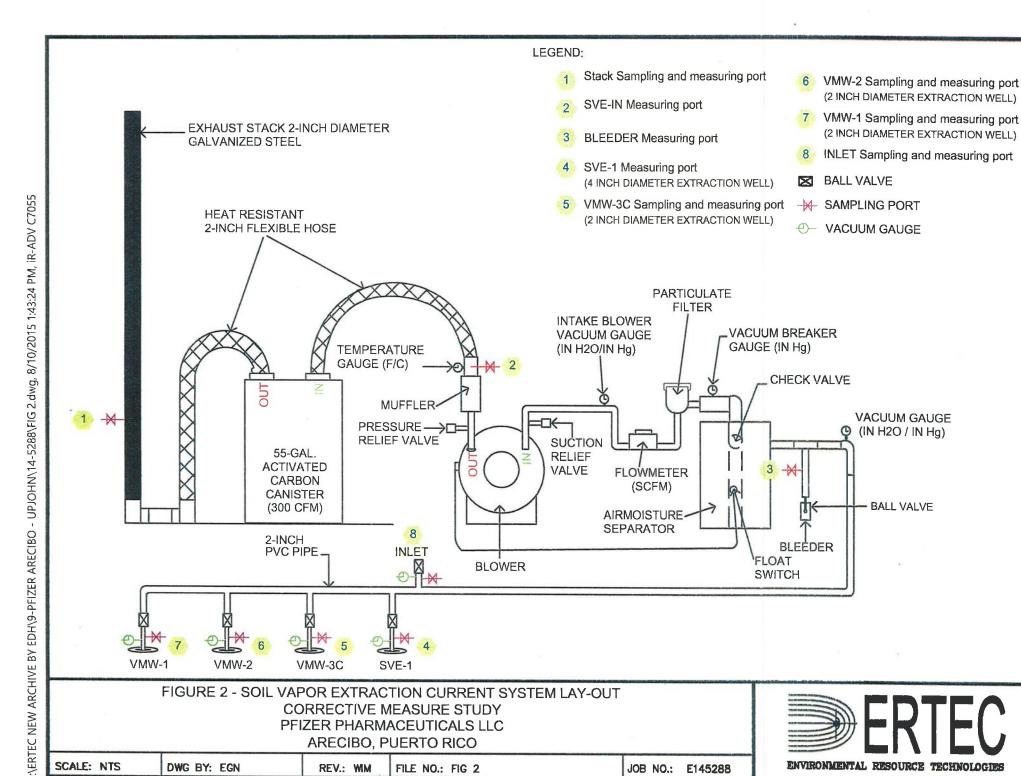
The SVE system was shutdown on May 31, 2016. A notification of a soil investigation at SVE area was provided to EPA by Pfizer on May 9, 2016 to evaluate modifications to SVE system, if required. Soil investigation activities began on August 23, 2016.

The next operational period is tentatively scheduled to begin in October or November 2016 (after completion of soil investigation activities and installation of additional SVE wells - as warranted based on investigation results). Monitoring and sampling activities will be performed during system start up, mid-operation and shutdown.

FIGURES

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384

ENVIRONMENTAL RESOURCE TECHNOLOGIES


JOB NO.: E145288

SCALE: NTS

DWG BY: EGN

REV.: WIM

FILE NO .: FIG 1

ENVIRONMENTAL RESOURCE TECHNOLOGIES

JOB NO.: E145288

SCALE: NTS

DWG BY: EGN

REV.: WIM

FILE NO.: FIG 2

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384

AIR SAMPLES VALIDATED ANALYTICAL RESULTS - APRIL & MAY 2016 SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

Sample ID	Sample Location	Collection Date (day-mo-yr)	Acetone (ppbv)	Methylene chloride (ppbv)	Chloroform (ppbv)	Carbon tetrachloride (ppbv)								
		SVE System	n Start up San	nples										
VMW-1-20														
VMW-2-20	Extraction well	1-Apr-16	14000U	1400U	2300	76,000								
VMW-3C-20	Extraction well	1-Apr-16	8400U	840U	3500	80,000								
SVE-A	Field duplicate of sample VMW-3C-20	1-Apr-16	10000U	1000U	3400	79,000								
INLET-20	Extraction wells combined sampling port	1-Apr-16	16000U	1600U	3600	110,000								
STACK-20	Stack outlet pipe	1-Apr-16	6.8	0.50U	0.20U	0.18J								
TB-040116	Trip blank ^{1/}	1-Apr-16	5.0U	0.50U	0.20U	0.20U								
		SVE System M	id-operation S	Samples										
VMW-1-21	Extraction well	2-May-16	2-May-16 8800U 880U 4600											
VMW-2-21	Extraction well	2-May-16	5500U	550U	2600	42000								
VMW-3C-21	Extraction well	2-May-16	5100U	510U	1900	38000								
INLET-21	Extraction wells combined sampling port.	2-May-16	4200U	420U	2400	43000								
STACK-21	Stack outlet pipe	2-May-16	360U	36U	180	3600								
		SVE System	Shutdown Sa	mples										
VMW-1-22	Extraction well	31-May-16	12000U	1200U	3700	68000								
VMW-2-22	Extraction well	31-May-16	9500U	950U	3000	53000								
VMW-3C-22	Extraction well	31-May-16	7100U	710U	1900	45000								
INLET-22	Extraction wells combined sampling port.	31-May-16	9800U	980U	2400	51000								
SVE-A	Field duplicate of sample INLET-22	31-May-16	8800U	880U	2300	49,000								
STACK-22	Stack outlet pipe	31-May-16	1500U	150U	230	5100								
TB-053116	Trip blank ^{1/}	31-May-16	5.0U	0.50U	0.20U	0.20U								

Notes:

ppbv

Parts per billion per volume.

1/

Trip blank provided by TestAmerica Laboratories.

U J The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

The analyte was positively identified. The associated numerical value is the approximate concentration of the

analyte in the sample.

SVE START UP STABILIZATION DATA SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

Operational Period:

April 1 to May 31, 2016 (1444 hours/60 days)

SVE Start up Date/Time: 01-Apr-16 / 10:44am

Reading	Extra	ction Well VM	TW-1	Reading	Extra	action Well VI	/IW-2	Deading	Extra	Extraction Well VMW-3C			
Time	Vacuum (inH₂O/inHg)	Flow Rate (ft/min)	Temp. (°F)	Time	Vacuum (inH₂O/inHg)	Flow Rate (ft/min)	Temp. (°F)	Reading Time	Vacuum (inH₂O/inHg)	Flow Rate (ft/min)	Temp. (°F)		
12:40	8/0.6	599	96.3	12:43	10 / 0.7	803	99.3	12:46	22 / 1.6	1482	95.5		
12:49	10 / 0.7	688	97.0	12:52	14 / 1.0	788	101.1	12:58	28 / 2.1	1496	96.3		
12:59	10 / 0.7	749	96.8	13:03	14 / 1.0	812	102.1	13:09	28 / 2.1	1507	97.2		

Deading		Inlet			Stack		Vacuum	Intake	Flow	Blower
Reading Time	Vacuum (inH₂O/inHg)	Flow Rate (ft/min)	Temp. (°F)	Flow Rate (ft/min)	Temp. (°F)	OVA (ppm)	Breaker (inHg)	Blower (inH₂O/inHg)	Meter (ACFM)	Temp. (°F)
12:46	22 / 1.6	890	89.0	5691	102.2	0.0	2.0	30 / 2.2	108	130.0
12:58	28 / 2.1	995	92.6	5699	105.7	0.0	2.0	32 / 2.4	108	132.0
13:09	28 / 2.1	1014	99.9	5730	106.7	0.0	2.0	32 / 2.4	108	132.0

Notes:

Inches of mercury. in Hg

in H₂O Inches of water. ft/min Feet per minute.

ACFM Actual cubic feet per minute.

°F Degrees Farenheit. Organic vapor analyzer.

OVA Parts per million. ppm

SVE OPERATION DATA SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

Operational Period: April 1 to May 31, 2016 (1444 hours/60 days)

DATE (day-mo-	SVE ON	SVE OFF	Reading Time	Bleeder Valve		MW-1 m Reading		/IW-2 n Reading		W-3C n Reading	INL Vacuum		Vacuum Breaker	Intake	Blower	SVE-1 Vacuum Reading	SVE Pressure	
yr)				Open	(in H ₂ O)	(in Hg)	(in H₂O)	(in Hg)	(in H ₂ O)	(in Hg)	(in H ₂ O)	(in Hg)	(in Hg)	(in H ₂ O)	(in Hg)	(in H ₂ O)	(in H ₂ O)	(psi)
1-Apr-16	10:44		13:11	Partial	10	0.7	14	1.0	28	2.1	28	2.1	1.5	32	2.3	0.00	18.4	0.66
5-Apr-16			9:15	Partial	10	0.7	13	1.0	13	1.0	14	1.0	1.3	32	2.3	NA	NA	NA
2-May-16		13	12:45	Partial	10	0.7	13	1.0	14	1.0	14	1.0	1.5	32	2.3	0.00	19.3	0.70
31-May-16		15:07	14:00	Partial	10	0.7	10	0.7	16	1.2	16	1.2	1.5	32	2.3	0.00	19.0	0.69
Average vacu	ıum extra	ction well	s:		10.0	0.7	12.5	0.9	17.8	1.3								

Average vacuum inlet:

Percent operating time for SVE system:

100%

DATE (day-mo-	SVE	SVE	Reading Time	Bleeder Valve		MW-1 w Rate		MW-2 w Rate		VMW-3C Flow Rate								INLET Flow Rate								STACK Flow Rate	
yr)	OIN	011	Tille	Open	(ft/min)	(ft³/min)	(ft/min)	(ft³/min)	(ft/min)	(ft³/min)	(ft/min)	(ft³/min)	(ft/min)	(ft³/min)	(ACFM)	(ft/min)	(ft³/min)	(ft/min)	(ft³/min)								
1-Apr-16	10:44		13:11	Partial	753	16.42	819	17.85	1521	33.16	1009	22.00	5950	129.71	108	5762	125.61	5760	125.57								
5-Apr-16			9:15	Partial	255	5.56	653	14.24	958	20.88	724	15.78	5787	126.16	108	5753	125.42	5672	123.65								
2-May-16			12:45	Partial	218	4.75	474	10.33	844	18.40	709	15.46	5875	128.08	108	5448	118.77	5682	123.87								
31-May-16		15:07	14:00	Partial	340	7.41	668	14.56	917	19.99	602	13.12	5113	111.46	117	6188	134.90	5592	121.91								
Average airfle	erage airflow rate extraction wells in ft ³ /min: 8.53 14.25			23.11																							
Total airflow	airflow rate extraction wells in ft3/min:			739.039		1.234.620		2.002.250																			

32.0

2.3

DATE	SVE	SVE	Reading	Bleeder	V	MW-1	V	MW-2	VM	W-3C	INL	ET	SVI	E-IN	Blo	wer		STACK	
(day-mo-	ON	OFF	Time	Valve	Terr	perature	Tem	perature	Tem	perature	Tempe	rature	Tempe	erature	Temp	erature	Tempe	rature	OVA
yr)	ON	Oli	Tille	Open	(°F)	(°C)	(°F)	(°C)	(°F)	(°C)	(°F)	(°C)	(°F)	(°C)	(°F)	(°C)	(°F)	(°C)	(ppm)
1-Apr-16	10:44		13:11	Partial	97.2	36.2	102.4	39.1	98.0	36.7	97.5	36.4	152.0	66.7	132.0	55.6	105.8	41.0	0.0
5-Apr-16			9:15	Partial	86.8	30.4	89.7	32.1	87.4	30.8	92.1	33.4	149.8	65.4	132.0	55.6	115.4	46.3	0.0
2-May-16			12:45	Partial	77.8	25.4	77.4	25.2	78.2	25.7	88.4	31.3	143.0	61.7	126.0	52.2	113.5	45.3	0.0
31-May-16		15:07	14:00	Partial	88.3	31.3	90.4	32.4	90.0	32.2	86.6	30.3	147.5	64.2	130.0	54.4	117.1	47.3	0.0

Notes:

in Hg Inches of mercury. ٥F

Degrees Farenheit.

in H₂O Inches of water. °C

Degrees Celsius.

ft/min Feet per minute. ft³/min

OVA

Organic vapor analyzer.

Cubic feet per minute.

ppm

Parts per million.

Actual cubic feet per minute.

MASS REMOVAL EXTRACTION WELLS VMW-1, VMW-2 AND VMW-3C - APRIL & MAY 2016 **SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016** PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

OPERATIONAL PERIOD: April 1 to May 31, 2016 (1444 hours/60 days)

VMW-1 Sample No.	I DATE I	VMW-1 Flow Rate		ACETONE		MET	HYLENE CHLO	RIDE		CHLOROFORM		CARB	ON TETRACHL	ORIDE
No.		(ft³/min)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(Ibs/day)
20	1-Apr-16	16.42	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.002088357	0.000128454	0.003082898	0.145406873	0.008943925	0.214654207
21	2-May-16	4.75	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.002690304	0.000047870	0.001148884	0.054241052	0.000965143	0.023163438
22	31-May-16	7.41	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.002121984	0.000058902	0.001413649	0.050234419	0.001394407	0.033465777

Total removal rate per compound in lbs/day: Estimated removed per compound in lbs:

0.000000000

0.000000000

0.005645431

0.271283422

Total VOCs removed (lbs) VMW-1:

0.000000

0.000000

0.339667

16.322219

Average air flow rate: 8.53 ft³/min

16.6619

14.1035

Total air flow rate:

739,039 ft³/min (60 days)

VMW-2 Sample No.	(day-mo-yr)	VMW-2 Flow Rate		ACETONE		MET	HYLENE CHLO			CHLOROFORM		CARB	ON TETRACHL	ORIDE
		(ft³/min)	(mg/L)	(lbs/hr)	(lbs/day)									
20	1-Apr-16	17.85	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.001929158	0.000128996	0.003095903	0.082111788	0.005490524	0.131772578
21	2-May-16	10.33	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.002282440	0.000088322	0.002119732	0.047492752	0.001837798	0.044107148
22	31-May-16	14.56	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.001714331	0.000093503	0.002244075	0.039012274	0.002127809	0.051067424

Total removal rate per compound in lbs/day:

0.000000000 0.000000

0.000000

0.000000000 0.000000

0.000000

0.007459710 0.448826

0.226947150 13.654654

Estimated removed per compound in lbs:

Total VOCs removed (lbs) VMW-2:

Average air flow rate: 14.25 ft³/min

Total air flow rate:

1,234,620 ft³/min (60 days)

VMW- 3C Sample		VMW-3C Flow Rate		ACETONE		MET	HYLENE CHLO	RIDE		CHLOROFORM		CARB	ON TETRACHLO	ORIDE
No.		(ft³/min)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(lbs/day)	(mg/L)	(lbs/hr)	(lbs/day)
20	1-Apr-16	33.16	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.006902991	0.000857476	0.020579420	0.203240966	0.025246190	0.605908561
21	2-May-16	18.40	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.001665145	0.000114773	0.002754553	0.042897705	0.002956800	0.070963201
22	31-May-16	19.99	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.002172909	0.000162714	0.003905131	0.066290669	0.004964040	0.119136960
	Total removal	rate per c	ompound in lbs	/day:	0.000000000			0.000000000			0.027239104			0.796008722

0.000000000

0.027239104 1.638886

0.796008722

Estimated removed per compound in lbs: Total VOCs removed (lbs):

49.5321

47.893191

Average air flow rate: 23.11 ft³/min

Total air flow rate:

2,002,250 ft³/min (68 days)

Total VOCs Removed 3 wells (lbs):

80.2974

MASS REMOVAL EXTRACTION WELLS VMW-1, VMW-2 AND VMW-3C - APRIL & MAY 2016 SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC **ARECIBO, PUERTO RICO**

Notes:

mg/L

ft3/min Cubic feet per minute.

Milligrams per liter.

R = Q x C/266.95 where:

Formula Calculation:

lbs/hr Pounds per hour.

lbs/day Pounds per day.

R = removal rate in lbs/hr or lbs/day

Q = air flow rate at extraction well in ft3/min

C = compound concentration in mg/L

SVE STACK DISCHARGE - APRIL & MAY 2016 SVE PULSING OPERATIONS PERIOD - FEBRUARY TO MAY 2016 PFIZER PHARMACEUTICALS LLC **ARECIBO, PUERTO RICO**

OPERATIONAL PERIOD: April 1 to May 31, 2016 (1444 hours/60 days)

STACK Sample No.	l Date l	Stack Flow Rate		ACETONE		MET	HYLENE CHLO	ORIDE		CHLOROFOR	W	CARB	ON TETRACHI	LORIDE	TOTAL VOCs	DISCHARGE
NO.		(ft³/min)	(mg/L)	(lbs/hr)	(lbs/day)	(lbs/hr)	(lbs/day)									
	PREQB Emissions Limit Criteria: 3 lbs										3 lbs/hr	15 lbs/day				
20	1-Apr-16	125.57	0.000091952	0.000043253	0.001038080	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000006443	0.000003031	0.000072740	0.000046284	0.001110820
21	2-May-16	123.87	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.004934558	0.002289731	0.054953548	0,127124802	0.058988385	1.415721231	0.061278116	1.470674779
22	31-May-16	121.91	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.006265898	0.002861493	0.068675838	0.178968940	0.081731049	1.961545172	0.084592542	2.030221010
Total SV	E system disc	charge per	compound in	lbs/day:	0.001038080			0.000000000			0.123629386			3.377339143		3.502006609

Total SVE system discharge per compound in lbs/day:

0.000000000

3.377339143

Estimated discharge per compound in lbs:

0.062

0.000

7.438

203.203

3.502006609

Total VOCs discharge (lbs):

210.704

Notes:

ft³/min

PREQB Puerto Rico Environmental Quality Board. Formula Calculation:

Cubic feet per minute.

R = Q x C/266.95 where: R = removal rate in lbs/hr or lbs/day

mg/L Milligrams per liter. lbs/hr Pounds per hour.

Pounds per day. lbs/day

Q = air flow rate in ft³/min

C = compound concentration in mg/L

TABLE 6

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft³/min)/days	(in H ₂ O)	(in H ₂ O)	(%)	(days)	(hours)	(lbs)	Date
1	Feb-00	SVE-1		15.11	522,202	36.1	19	83	24	576	22.2	
2	Mar-00	SVE-1		23.92	930,009.60	35	18	87	27	648	3.6	
3	Apr-00	SVE-1		41.8	953,268	50.3	36	53	16	380	22.38	4/14/00
4	May-00	SVE-1		55.96	70,503.30	52	36	3.2	2	21	0.06	
5	Jul-00	SVE-1	200 / 140-190	4.20	78,372	34	6	42	13	311	19.2	
6	Aug-00	SVE-1	2007 140-130	4.20	153,468	34	5	81	25	609	34.2	8/29/00
7	Sep-00	SVE-1		8.63	293,593	34	4	80	24	567	14.5	
- 8	Oct-00	SVE-1		8.19	324,324	34	4	89	27.5	660	4.29	
9	Nov-00	SVE-1		15.68	579,676	34	4	85	25.6	616	0.063	
10	Dec-00	SVE-1		5.16	166,565	34	4	80	22.4	538	0.02	
11	Jan-01	SVE-1		4.55	170,352	34	4	76	26	624	0.02	1/26/01
12	Feb-01	SVE-1		4.47	147,510	34	4	82	23	550	0.03	
13	Mar-01	SVE-1		4.83	180,545	34	4	83	26	623	0.09	
14	Apr-01	SVE-1		2.58	93,963	35	5.5	81	25	607	1.75	
15	May-01	SVE-1		2.75	109,890	38	8.2	90	28	666	3.88	
16	Jun-01	SVE-1	200 / 140-190	3.25	116,805	37.8	8	86	25	599	1.19	6/14/01
17	Jul-01	SVE-1		3.02	122,123	38	7.9	88	28	674	0.91	
18	Aug-01	SVE-1		3.00	124,020	37	7.9	94	29	689	0.77	
19	Sep-01	SVE-1		2.60	82,368	32	7.8	79	22	528	0.074	
20	Oct-01	SVE-1		3.06	112,180	26	7.7	77	25.5	611	0.11	10/11/01
21	Nov-01	SVE-1		3.14	122,083	26	7.3	90	27	648	0.59	
22	Dec-01	SVE-1		2.98	88,506	26.2	7.8	75	21	495	0.56	
23	Jan-02	SVE-1		2.57	92,520	28.2	9.6	73	25	600	0.91	
24	Feb-02	SVE-1	į.	3.04	101,232	28	9.4	82	23	555	1.68	
25	Mar-02	SVE-1		2.41	79,385	28	9.9	85	23	549	3.84	3/25/02
26	Apr-02	SVE-1	200 / 140-190	2.32	94,934.40	32	17	82	28	682	93	
27	May-02	SVE-1		2.81	109.,421.4	29	16	87	27	649	1.01	5/9/02
28	Jun-02	SVE-1		2.41	80,976	30.7	17	82	23	560	1.24	
29	Jul-02	SVE-1		2.42	30,511	32.8	20	53	9	212	12.9	
Add.	Jul-02	VMW-3C	195 / 190-195	8.72	52,320	32.4	19.7	100	4	100	5.4	
Add.	Jul-02	VMW-2	170 / 165-170	2.03	4,019	32.8	20.7	64	1.4	33	0.78	7/24/02
Add.	Aug-02	VMW-1	150 / 145-150	3.51	21,060	30.4	18.3	100	4	100	1.92	8/14/02
Add.	Aug & Sep-02	INLET		37.24	234,612	32	19	100	4	105	0.05	

TABLE 6

Report No.	Period (mo/yr)	Extraction Well	Well Depth/ Screen Interval (feet)	Average Airflow Rate (ft³/min)	Total Airflow Rate (ft ³ /min)/days	Average Vacuum Inlet Vacuum Pump (in H₂O)	Average Vacuum Extraction Well (in H ₂ O)	Percentage (%)	Operational Time (days)	Time (hours)	Removal (lbs)	Carbon Canister Replacement Date
30	Sep-02	VMW-2	170 / 165-170	3.95	36,735	32	18	50	6.5	155	0.7	9/25/02
31	Oct-02	VMW-2	170 / 165-170	3.82	62,572	31	17	73	11	273	0.9	
		VMW-1	150 / 145-150	4.36	63,046	31	19	100	10	241	0.52	
32	Nov-02	VMW-1	150 / 145-150	4.98	46,015	31	19	75	6	154	1.2	11/8/02
33	Dec-02	VMW-1	1001110100	5.77	133,287	32	20	67	16	385	1.8	12/12/02
34	Jan-03	VMW-1		5.14	137,546	32	20	48	19	446	2.4	1/24/03
35	Feb-03	VMW-1	150 / 145-150	5.45	166,116	34	22	81	21	508	2.03	
36	Mar-03	VMW-1		3.5	123,270	36	24.6	77	24	587	3.25	3/3/03
37	Apr-03	VMW-3C		4.79	156,920	34	20.7	70	23	546	3.97	4/1 & 4/23/03
38	May-03	VMW-3C		3.74	104,795	32	18	67	19.5	467	2.87	5/15/03
39	Jun-03	VMW-3C	195 / 190-195	10.49	239,172	31	16	52	16	380	1.42	6/6 & 6/30/03
40	Jul-03	VMW-3C		3.6	88,776	31	17	55	17	411	0.24	7/15 & 7/28/03
41	Aug-03	VMW-3C	1	4.72	167,654	31	17	71	25	592	0.64	8/21/03
42	Sep-03	SVE-1		3.05	69,540	34	22	84	16	380	0.04	9/5/03
43	Oct-03	SVE-1	200 / 440 400	1.36	32,477	34	22	47	17	398	0.6	10/6 & 10/23/03
44	Nov-03	SVE-1	200 / 140-190	6.21	107,681	33	20	60	12	289	0.03	11/11/03
45	Dec-03	SVE-1		15.08	145,673	33	23	47	7	161	0.02	12/2/03
46	Jan & Feb-04	SVE-1	200 / 140-190	2.18	24,852	32	19	67	8	190	0.02	1/19/04
0	OBIT OF CB-04	VMW-1	150 / 145-150	5.04	81,648	34	22	79	11	270	19.73	1/19/04
47	Mar-04	VMW-1		9.45	199,017	34	22	56	15	351	5.93	3/1 & 3/17/04
48	Apr-04	VMW-1		5.78	149,818	34	22	64	18	432	1.37	4/19/04
49	May-04	VMW-1		8.09	301,919	33	20	93	26	622	2.85	5/7 & 5/21/04
50	Jun-04	VMW-1		6.76	360,173	29	17	100	37	888	8.73	6/4 & 6/22/04
51	Jul-04	VMW-1	150 / 145-150	7.90	297,198	32	20	96	26	627	1.47	7/12 & 7/27/04
52	Aug-04	VMW-1	1307 140-130	4.8	235,008	32	20	100	34	816	5.29	8/11 & 8/27/04
53	Sep-04	VMW-1		3.54	147,618	27	18	100	29	695	1.22	9/13 & 9/28/04
54	Oct-04	VMW-1		4.9	196,980	30	18	100	28	670	1.00	10/13 & 10/26/04
55	Nov-04	VMW-1		7.41	365,461	28	15	100	34	822	6.61	11/10 & 11/23/04
56	Dec-04	VMW-1		5.72	219,648	30	19	96	27	640	7.11	12/6 & 12/20/04

TABLE 6

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft³/min)/days	(in H ₂ O)	(in H ₂ O)	(%)	(days)	(hours)	(lbs)	Date
57	Jan-05	VMW-1		7.19	342,722	30	19	94	33	794	4.40	1/4 & 1/17/05
58	Feb-05	VMW-1		6.27	203,524	30	17.5	85	23	541	2.93	2/10 & 2/24/05
59	Mar-05	VMW-1		7.08	285,667	30	19.5	100	28	672	23.80	3/10 & 3/23/05
60	Apr-05	VMW-1	150 / 145-150	8.18	364,932	30	18.5	100	31	744	1.85	4/8 & 4/21/05
61	May-05	VMW-1	1307 143-130	11.17	465,789	30	20	100	29	695	2.09	5/4 & 5/20/05
62	Jun-05	VMW-1		6.65	296,856	31	20	100	31	744	2.85	6/3, 6/17 & 6/27/05
63	Jul-05	VMW-1		22.07	921,643	31	20	100	29	696	11.17	7/11 & 7/26/05
64	Aug-05	VMW-1		18.94	792,071	31	19	100	29	697	8.50	8/10 & 8/24/05
	Sept & Oct 05	VMW-1	150 / 145-150	4.63	833	31.5	19	100		3	0.078	
65	(Extraction	VMW-2	170 / 165-170	4.91	589	32	15.5	100		2	0.001	
05	Wells	VMW-3C	195 / 190-195	3.27	529.7	31.5	15.5	100		2.7	0.059	
	Shutdown)	SVE-1	200 / 140-190	0.68	123.3	40	27.3	100		3	0.0004	
		VMW-1	150 / 145-150	1.27	11,201		15.7				0.155	
66	Oct-05	VMW-2	170 / 165-170	9.63	84,937	29	11.7	100	6	147	0.081	31-Oct-05
		VMW-3C	195 / 190-195	2.91	25,666		13				0.085	
		VMW-1	150 / 145-150	3.82	145,084		14.6				1.484	
67	Nov-05	VMW-2	170 / 165-170	3.27	124,195	29.6	10.6	90	26	633	0.116	11/16 & 11/29/05
		VMW-3C	195 / 190-195	2.40	91,152		11.8				0.407	
		VMW-1	150 / 145-150	5.18	216,317		13.8				0.422	
68	Dec-05	VMW-2	170 / 165-170	14.17	591,739	30	10	100	29	696	0.063	12/7 & 12/21/05
		VMW-3C	195 / 190-195	8.86	369,994		10.8				0.492	
		VMW-1	150 / 145-150	8.99	406,168		13				2.332	
69	Jan-06	VMW-2	170 / 165-170	15.4	695,772	30	10.3	91	31	753	0.224	1/11 & 1/25/06
		VMW-3C	195 / 190-195	9.81	443,216		10				1.49	
		VMW-1	150 / 145-150	7.22	290,244		13.8				1.598	
70	Feb-06	VMW-2	170 / 165-170	3.27	131,454	30	10.3	100	28	670	0.076	2/8 & 2/20/06
		VMW-3C	195 / 190-195	5.18	208,236		10				0.469	
		VMW-1	150 / 145-150	1.91	54,779		15				0.472	
71	Mar-06	VMW-2	170 / 165-170	4.09	117,301	30.3	13.3	100	20	478	0.097	3/8, 3/17 & 3/28/06
		VMW-3C	195 / 190-195	2.73	78,296		12				0.347	
		VMW-1	150 / 145-150	2.59	111,733		14.5				0.917	
72	Apr-06	VMW-2	170 / 165-170	3.00	129,420	30.3	13.5	100	30	719	0.061	4/5, 4/18 & 4/27/06
		VMW-3C	195 / 190-195	3.55	153,147		11.5				0.664	

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft ³ /min)/days	(in H₂O)	(in H ₂ O)	(%)	(days)	(hours)	(lbs)	Date
		VMW-1	150 / 145-150	7.57	359,272		15.6				2.605	
73	May-06	VMW-2	170 / 165-170	16.95	804,447	30	14.0	100	33	791	0.219	5/10 & 5/22/06
		VMW-3C	195 / 190-195	11.70	555,282		11.6				1.927	
		VMW-1	150 / 145-150	9.20	372,600		15.8		Í		1.95	
74	Jun-06	VMW-2	170 / 165-170	7.62	308,610	30	13.8	100	28	675	0.062	6/5 & 6/19/06
		VMW-3C	195 / 190-195	8.96	362,880		12.0				0.858	
		VMW-1	150 / 145-150	12.70	563,118		15.8	6			2.326	
75	Jul-06	VMW-2	170 / 165-170	22.42	994,103	30	14.0	100	31	739	0.034	6/30, 7/11 & 7/21/06
		VMW-3C	195 / 190-195	16.39	726,733		12.5				1.000	
		VMW-1	150 / 145-150	9.07	446,244		15.8				5.512	
76	Aug-06	VMW-2	170 / 165-170	11.96	588,432	30	14.6	100	34	820	0.671	8/2, 8/15 & 8/25/06
		VMW-3C	195 / 190-195	9.91	487,572		12.6				2.741	
		VMW-1	150 / 145-150	9.45	339,066		15.5				1.165	
77	Sep-06	VMW-2	170 / 165-170	10.09	362,029	30.3	14.0	93	25	598	0.058	9/7 & 9/22/06
		VMW-3C	195 / 190-195	9.52	341,578		11.5				0.480	
		VMW-1	150 / 145-150	9.87	384,338		16				2.018	
78	Oct-06	VMW-2	170 / 165-170	9.58	373,045	30.8	14.0	100	27	649	0.065	10/3 & 10/16/06
		VMW-3C	195 / 190-195	8.96	348,902		12				0.489	
		VMW-1	150 / 145-150	9.80	479,808		16				5.970	
79	Nov-06	VMW-2	170 / 165-170	13.85	678,096	30.4	14.2	100	34	816	2.237	11/1, 11/13 & 11/27/06
		VMW-3C	195 / 190-195	10.30	504,288		11.8				7.244	
		VMW-1	150 / 145-150	9.12	369,907		15				1.531	
80	Dec-06	VMW-2	170 / 165-170	9.20	373,152	31.5	14.0	96	28	676	0.815	12/12 & 12/26/06
		VMW-3C	195 / 190-195	8.04	326,102		12				0.568	
							**					
		VMW-1	150 / 145-150	8.26	404,410		15				3.731	
81	Jan-07	VMW-2	170 / 165-170	7.98	390,701	31.8	14.0	100	34	816	2.001	1/8 & 1/22/07
		VMW-3C	195 / 190-195	8.02	392,659	1	12				1.272	
		VMW-1	150 / 145-150	8.21	331,027		15				2.344	
82	Feb-07	VMW-2	170 / 165-170	11.15	449,568	32	13.5	100	28	672	2.645	2/5 & 2/19/07
		VMW-3C	195 / 190-195	9.33	376,186		12				0.962	
		VMW-1	150 / 145-150	11.13	431,399		18.4				1.856	
83	Mar-07	VMW-2	170 / 165-170	10.97	425,197	34	16.8	96	27	646	0.725	3/5 & 3/19/07
		VMW-3C	195 / 190-195	12.08	468,221	1	15.4				1.014	

TABLE 6

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft ³ /min)/days	(in H₂O)	(in H₂O)	(%)	(days)	(hours)	(lbs)	Date
		VMW-1	150 / 145-150	12.22	493,444		18.5				0.003	
84	Apr-07	VMW-2	170 / 165-170	9.19	371,092	34	17.0	100	28	673	0.001	4/2 & 4/16/07
		VMW-3C	195 / 190-195	10.25	413,895		16				0.005	
		VMW-1	150 / 145-150	13.45	522,129		19.5				0.360	
85	May-07	VMW-2	170 / 165-170	9.22	357,920	34	17.5	93	27	647	0.103	4/30 & 5/14/07
		VMW-3C	195 / 190-195	10.95	425,079		16.3				0.379	
		VMW-1	150 / 145-150	10.32	505,267		20				1.065	
86	Jun-07	VMW-2	170 / 165-170	10.17	497,923	34	18.4	100	34	816	0.331	6/1, 6/11 & 6/25/07
		VMW-3C	195 / 190-195	11.83	579,197		17.2				0.413	
		VMW-1	150 / 145-150	8.28	405,886		20				1.959	
87	Jul-07	VMW-2	170 / 165-170	7.48	366,670	34	18.8	97	34	817	1.050	7/13 & 7/24/07
		VMW-3C	195 / 190-195	7.56	370,591		17.8				1.030	
		VMW-1	150 / 145-150	8.68	375,497		20				0.5904	
88	Aug-07	VMW-2	170 / 165-170	10.09	436,493	35.3	19.5	100	30	721	0.0003	8/7 & 8/20/07
		VMW-3C	195 / 190-195	9.95	430,437		17.5				0.2948	
		VMW-1	150 / 145-150	10.34	385,889	8	19				0.3133	
89	Sep-07	VMW-2	170 / 165-170	10.40	388,128	32.8	18.0	100	26	622	0.0704	9/5 & 9/17/07
		VMW-3C	195 / 190-195	12.39	462,395		17				0.2904	
		VMW-1	150 / 145-150	8.82	444,528		17				0.9898	
90	Oct-07	VMW-2	170 / 165-170	9.73	490,392	26.4	15.8	100	35	840	0.6067	10/1, 10/16 & 10/29/07
		VMW-3C	195 / 190-195	10.22	515,088		14				0.4012	
		VMW-1	150 / 145-150	7.15	71,643		10				1/	
91	Nov-07	VMW-2	170 / 165-170	6.74	67,535	24	10.0	100	7	167	0.0600	2/
		VMW-3C	195 / 190-195	7.19	72,044		8				0.0400	
		VMW-1	150 / 145-150	7.77	67,133		18.5				3.6246	
92	Dec-07	VMW-2	170 / 165-170	8.35	72,144	34	16.0	100	6	144	1.3622	27-Dec-07
		VMW-3C	195 / 190-195	7.87	67,997		14				0.8652	
		VMW-1	150 / 145-150	9.61	443,405		18.2				1.5562	
93	Jan-08	VMW-2	170 / 165-170	12.37	570,752	35.4	17.6	100	32	769	1.5251	1/3, 1/14 & 1/28/08
		VMW-3C	195 / 190-195	12.38	571,213		15.4				0.9589	
		VMW-1	150 / 145-150	8.56	356,952		17				0.0006	
94	Feb-08	VMW-2	170 / 165-170	12.34	514,578	35.5	17.8	100	29	695	0.0010	2/11 & 2/26/08
		VMW-3C	195 / 190-195	8.63	359,871		16				0.0006	

TABLE 6

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft³/min)/days	(in H₂O)	(in H ₂ O)	(%)	(days)	(hours)	(lbs)	Date
		VMW-1	150 / 145-150	11.03	428,185		14				0.0005	
95	Mar-08	VMW-2	170 / 165-170	10.53	408,774	35.8	16.8	99.8	27	647	0.0005	3/10 & 3/24/08
		VMW-3C	195 / 190-195	10.02	388,976		16				0.0004	
		VMW-1	150 / 145-150	9.57	466,825		15.4				1.0248	
96	Apr-08	VMW-2	170 / 165-170	8.60	419,508	35.6	18.0	97	34	813	0.1213	4/7 & 4/22/08
		VMW-3C	195 / 190-195	8.53	416,093		16.2				0.5483	
		VMW-1	150 / 145-150	11.20	516,768		15.5				0.8620	
97	May-08	VMW-2	170 / 165-170	10.52	485,393	34.3	18.8	100	32	769	0.2067	5/5 & 5/19/08
		VMW-3C	195 / 190-195	9.93	458,170		17.5				0.3581	
		VMW-1	150 / 145-150	13.19	421,025		16				0.2231	
98	Jun-08	VMW-2	170 / 165-170	15.76	503,059	34	19	85	22	532	0.0779	6/6 & 6/19/08
		VMW-3C	195 / 190-195	14.14	451,349		17				0.2923	
		VMW-1	150 / 145-150	9.41	460,149		16				0.5544	
99	Jul-08	VMW-2	170 / 165-170	8.90	435,210	34	19	100	34	815	0.1523	7/1, 7/15 & 7/29/08
		VMW-3C	195 / 190-195	9.01	440,589		17.3				0.6563	
		VMW-1	150 / 145-150	12.71	441,545		16				0.000131	
100	Aug-08	VMW-2	170 / 165-170	12.38	430,081	34	19	89	24	579	0.000131	8/11 & 8/25/08
		VMW-3C	195 / 190-195	15.76	547,502		17				0.000250	
		VMW-1	150 / 145-150	9.08	363,382		16				0.000144	
101	Sep-08	VMW-2	170 / 165-170	9.99	399,800	34	19.5	100	28	667	0.000156	9/9 & 9/22/08
		VMW-3C	195 / 190-195	9.14	365,783		16.8				0.000066	
		VMW-1	150 / 145-150	9.69	500,585		16				2.365452	
102	Oct-08	VMW-2	170 / 165-170	14.44	745,970	34.4	19.4	100	36	861	0.605816	10/7 & 10/23/08
		VMW-3C	195 / 190-195	11.59	598,739		17.2				1.549567	
		VMW-1	150 / 145-150	8.95	318,441		15				2.454853	11/3 & 11/19/08
103	Nov-08	VMW-2	170 / 165-170	11.79	419,488	34.3	18.5	89	25	593	0.932874	
		VMW-3C	195 / 190-195	11.30	402,054		16.5				1.899250	3/
		VMW-1	150 / 145-150	13.47	253,775		12.7				5.393837	*
104	Mar-09	VMW-2	170 / 165-170	13.33	251,137	34.7	18.0	100	13	314	3.024644	10-Mar-09
		VMW-3C	195 / 190-195	13.63	256,789		14.7				7.767911	
		VMW-1	150 / 145-150	10.64	395,170		15.5				1.854802	
105	Apr-09	VMW-2	170 / 165-170	10.86	403,340	35.5	18.8	89.6	26	619	0.244926	4/7 & 4/20/09
		VMW-3C	195 / 190-195	13.33	495,076		17				0.858882	

TABLE 6

Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
			(feet)	(ft³/min)	(ft³/min)/days	(in H₂O)	(in H ₂ O)	(%)	(days)	(hours)	(lbs)	Date
		VMW-1	150 / 145-150	16.18	908,669		15.8				7.571623	
106	May-09	VMW-2	170 / 165-170	15.39	864,302	34.8	18.2	100	39	936	0.561549	5/8 & 5/21/09
		VMW-3C	195 / 190-195	18.88	1,060,301		16.4				3.726816	
		VMW-1	150 / 145-150	14.55	669,591		16.8				5.980598	
107	Jun-09	VMW-2	170 / 165-170	12.57	578,471	34.4	19.6	100	32	767	1.009781	6/8 & 6/22/09
		VMW-3C	195 / 190-195	13.96	642,439		18				2.875422	
		VMW-1	150 / 145-150	15.71	608,920		16.5				4.276	
108	Jul-09	VMW-2	170 / 165-170	14.37	556,981	35.3	19.5	100	27	646	0.762	7/7 & 7/20/09
		VMW-3C	195 / 190-195	14.62	566,671		18.3				2.344	
		VMW-1	150 / 145-150	10.63	424,137		16				2.290572	
109	Aug-09	VMW-2	170 / 165-170	12.18	485,982	36	20.0	99	28	665	0.707209	8/3 & 8/18/09
		VMW-3C	195 / 190-195	13.85	552,615		17.8				1.466105	
		VMW-1	150 / 145-150	7.62	280,264		16.0				5.478173	
110	Sep-09	VMW-2	170 / 165-170	9.28	341,318	35.5	19.0	91	25.5	613	0.411593	9/1 & 9/17/09
		VMW-3C	195 / 190-195	9.69	356,398		17.8				1.007658	
		VMW-1	150 / 145-150	10.00	503,400		16.0				3.261948	
111	Oct-09	VMW-2	170 / 165-170	12.43	625,726	36	19.0	100	35	839	1.242479	10/1 & 10/13/09
		VMW-3C	195 / 190-195	11.47	577,400		17.6				2.198758	
		VMW-1	150 / 145-150	8.97	452,088		14.3				2.853304	
112	Nov-09	VMW-2	170 / 165-170	11.96	602,784	36	18.3	100	35	840	0.802025	11/2, 11/16 & 11/30/09
		VMW-3C	195 / 190-195	13.52	681,408		16.5			ATTENDED TO MANAGEMENT	2.260381	
		VMW-1	150 / 145-150	9.97	400,794		14.0				6.407085	
113	Dec-09	VMW-2	170 / 165-170	10.86	436,572	36.3	18.0	100	28	670	6.689507	12/14 & 12/28/09
		VMW-3C	195 / 190-195	11.50	462,300		15.8				5.435659	
		VMW-1	150 / 145-150	9.46	380,860		14.0				2.065491	
114	Jan-10	VMW-2	170 / 165-170	9.44	380,054	36.3	17.3	100	28	671	0.923901	1/11/10
		VMW-3C	195 / 190-195	11.53	464,198		14.5				1.111874	
		VMW-1	150 / 145-150	9.73	392,314		15.0				1.886799	
115	Feb-10	VMW-2	170 / 165-170	15.00	604,800	36.3	14.0	100	28	672	1.871269	2/8/10
		VMW-3C	195 / 190-195	11.65	469,728		14.8				0.987515	

Notes:	
1/	The laboratory reported that sample VMW-1-108 collected from extraction well VMW-1 was received broken and no analysis was performed.
2/	Moisture separator found broken during November 5, 2007 sampling activities. SVE system turn off until moisture separator replacement on December 21, 2007.
3/	On December 1, 2008 the SVE vacuum blower was reported by Pfizer personnel to be out of operation. A new blower unit was installed on February 28, 2009.
	The SVE system operation was resumed on March 10, 2009 after SVE systems check (blower motor rotation, electrical, pipelines, joints, vacuum gauges, flow
	meter, moisture separator and stack), and stabilization parameters and vapor samples from extraction wells and stack.

TABLE 7

Report No.	Period (mo/yr)	Extraction Well	Well Depth/ Screen Interval (feet)	Average Airflow Rate (ft³/min)	Total Airflow Rate (ft ³ /min)/days	Average Vacuum Inlet Vacuum Pump (in H ₂ O)	Average Vacuum Extraction Well (in H₂O)	Operational Time Percentage (%)	Operational Time (days)	Operational Time (hours)	VOC Mass Removal (lbs)	Carbon Canister Replacement Date
	STATE OF					PULSING/CYCLING	PROCEDURES	THE PARTY OF THE				
		VMW-1	150 / 145-150	16.33	752,486		17.0				2.6477	
	Apr-10	VMW-2	170 / 165-170	15.01	691,661	36	13.0	100	32	768	0.5367	
		VMW-3C	195 / 190-195	13.01	599,501		17.0				2.8294	
l		VMW-1	150 / 145-150	9.32	387,526		17.0				15.3813	
1	Jun-10	VMW-2	170 / 165-170	10.44	434,095	36.5	13.5	100	29	693	11.0887	1/
		VMW-3C	195 / 190-195	9.29	386,278		17.0				9.1009	
		VMW-1	150 / 145-150	15.00	583,200		18.5				36.4456	
	Aug-10	VMW-2	170 / 165-170	15.54	604,195	37.5	15.0	100	27	648	23.1364	
		VMW-3C	195 / 190-195	16.30	633,744		19.0				14.9451	
	Oct-10	VMW-1	150 / 145-150	12.20	458,232	37.5	18.0				27.9329	10/6/10
		VMW-2	170 / 165-170	14.12	530,347		14.0	100	26	626	18.4070	
l		VMW-3C	195 / 190-195	20.10	754,956		18.0				13.5022	
lſ	Dec-10	VMW-1	150 / 145-150	6.41	248,836	38	18.5	100	27	647	15.7973	
2		VMW-2	170 / 165-170	7.98	309,784		14.0				5,5114	
IL		VMW-3C	195 / 190-195	7.14	277,175		17.5				3.0974	
		VMW-1	150 / 145-150	5.96	233,155		16.0	100	27	652	19.9244	
	Feb-11	VMW-2	170 / 165-170	5.76	225,331	38	14.0				12.5025	
		VMW-3C	195 / 190-195	6.19	242,153		18.0				7.4042	
		VMW-1	150 / 145-150	18.39	610,180		16.0	100	23		33.0169	97
1 1	Apr-11	VMW-2	170 / 165-170	14.50	481,110	37	14.0			553	9.8245	
		VMW-3C	195 / 190-195	17.94	595,249		16.0				8.0317	
I		VMW-1	150 / 145-150	15.39	578,048		18.0				30.2072	
	Jun-11	VMW-2	170 / 165-170	12.88	483,773	37	13.0	100	26	626	7.2812	2/
3		VMW-3C	195 / 190-195	12.09	454,100		17.5				9.8346	
ľ°[VMW-1	150 / 145-150	16.96	724,531		19.0				27.3855	
	Aug-11	VMW-2	170 / 165-170	17.40	743,328	39	16.0	100	29	712	16.4732	
		VMW-3C	195 / 190-195	19.01	812,107		20.0				7.2905	
[VMW-1	150 / 145-150	8.06	383,978		19.0				15.1555	
	Nov-11	VMW-2	170 / 165-170	7.94	378,262	37	16.0	100	33	794	7.8081	
		VMW-3C	195 / 190-195	6.19	294,892		19.0				4.8375	

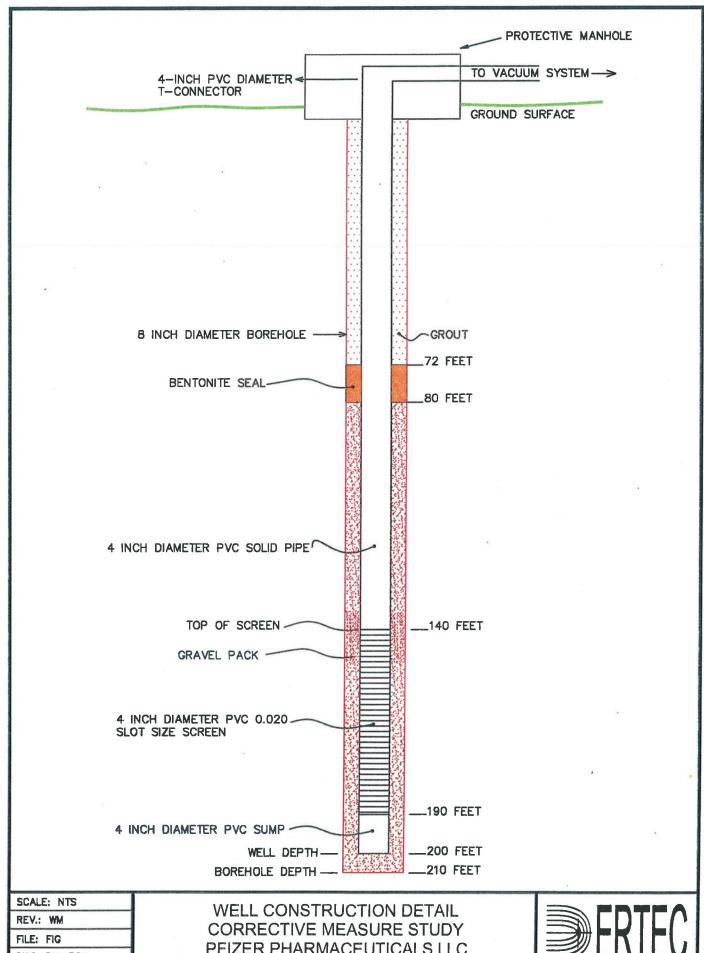
TABLE 7

Report No.	Period (mo/yr)	Extraction Well	Well Depth/ Screen Interval (feet)	Average Airflow Rate (ft³/min)	Total Airflow Rate (ft³/min)/days	Average Vacuum Inlet Vacuum Pump (in H ₂ O)	Average Vacuum Extraction Well (in H₂O)	Operational Time Percentage (%)	Operational Time (days)	Operational Time (hours)	VOC Mass Removal (lbs)	Carbon Canister Replacement Date
		VMW-1	150 / 145-150	7.78	414,985		14.0				22.8349	
	Jan-Feb 2012	VMW-2	170 / 165-170	7.51	400,583	31.5	10.0	100	37	889	4.7724	1/23/12 ^{3/}
		VMW-3C	195 / 190-195	7.06	376,580		14.0				6.6713	
		VMW-1	150 / 145-150	9.60	374,400		16.0				11.3448	
4	Apr-12	VMW-2	170 / 165-170	9.32	363,480	33.5	10.0	100	27	650	2.4469	
		VMW-3C	195 / 190-195	9.54	372,060		16.0				5.0372	4/
		VMW-1	150 / 145-150	8.46	306,590		18.0				10.0404	
	Jun-12	VMW-2	170 / 165-170	6.60	239,184	34.5	13.5	100	25	604	3.2279	
		VMW-3C	195 / 190-195	9.46	342,830		19.0	1			4.1748	
0.78												
		VMW-1	150 / 145-150	7.78	414,985		16.0				22.8349	
	Aug-12	VMW-2	170 / 165-170	7.51	400,583	36	13.5	100	30	721	4.7724	
		VMW-3C	195 / 190-195	7.06	376,580		19.0				6.6713	
		VMW-1	150 / 145-150	9.60	374,400		16.0				11,3448	
5	Oct-12	VMW-2	170 / 165-170	9.32	363,480	33.5	10.0	100	27	650	2.4469	10/2/12
		VMW-3C	195 / 190-195	9.54	372,060		16.0				5.0372	
		VMW-1	150 / 145-150	8.46	306,590		18.0				10.0404	
	Dec-12	VMW-2	170 / 165-170	6.60	239,184	34.5	13.5	100	25	604	3.2279	
		VMW-3C	195 / 190-195	9.46	342,830		19.0				4.1748	
7723	- Tongs		The state of the state of			and the same						
		VMW-1	150 / 145-150	9.37	323,827		14.0				8.0138	
	Feb-13	VMW-2	170 / 165-170	9.28	320,717	38	10.0	100	24	576	4.9841	
		VMW-3C	195 / 190-195	8.18	282,701		16.0				6.9808	
		VMW-1	150 / 145-150	10.48	409,349		14.0	100			10.4615	
6	Apr-13	VMW-2	170 / 165-170	21.04	821,822	36	10.0		27	651	8.9647	4/3/13
_		VMW-3C	195 / 190-195	15.72	614,023	1	16.0	1			10.3771	
		VMW-1	150 / 145-150	23.33	834,281		15.5				22.7551	
	Jun-13	VMW-2	170 / 165-170	14.13	505,289	35	13.5	100	25	596	10.1854	
		VMW-3C	195 / 190-195	17.91	640,462	1	16.5	1			12.8600	

TABLE 7

Report No.	Period (mo/yr)	Extraction Well	Well Depth/ Screen Interval (feet)	Average Airflow Rate (ft³/min)	Total Airflow Rate (ft³/min)/days	Average Vacuum Inlet Vacuum Pump (in H ₂ O)	Average Vacuum Extraction Well (in H ₂ O)	Operational Time Percentage (%)	Operational Time (days)	Operational Time (hours)	Removal (lbs)	Carbon Canister Replacement Date
		VMW-1	150 / 145-150	16.80	750,960		15.0				18.6665	
	Aug-13	VMW-2	170 / 165-170	23.05	1,030,335	35	14.0	100	31	745	18.0805	8/6/13
7		VMW-3C	195 / 190-195	23.20	1,037,040		18.0				17.8033	
	Oct-13	SVE-1	200 / 140-190	22.28	896,993	31	22.0	100	28	671	2.6588	5/
	Dec-13/Jan-14	SVE-1	200 / 140-190	13.11	604,895	30	15.0	100	32	769	1.0149	
		VMW-1	150 / 145-150	5.04	326,894		13.5				7.7315	
	Feb-14/Mar-14	VMW-2	170 / 165-170	6.98	452,723	33	11.5	100	45	1081	9.5835	
		VMW-3C	195 / 190-195	7.87	510,448		17.5				11.0107	
		VMW-1	150 / 145-150	24.43	1,018,731		19.5				10.4615	
8	May-14	VMW-2	170 / 165-170	23.20	967,440	37	19.5	100	29	695	8.9647	6/
		VMW-3C	195 / 190-195	27.52	1,147,584		19.5	1			10.3771	
	Aug-14	VMW-1	150 / 145-150	13.40	580,488	38	5.0	100	30	722	22,7551	8/5/14
		VMW-2	170 / 165-170	16.18	700,918		12.0				10.1854	
		VMW-3C	195 / 190-195	18.79	813,983		21.0				12.8600	
1107												
		VMW-1	150 / 145-150	16.37	757,276		5.0				4.7333	
	Oct-14/Nov-14	VMW-2	170 / 165-170	21.29	984,875	36.7	12.0	100	32	771	12.0564	
		VMW-3C	195 / 190-195	25.35	1,172,691	1	20.7				18.0136	
		VMW-1	150 / 145-150	13.07	847,720		9.0				20.6504	
9	Jan-15/Feb-15	VMW-2	170 / 165-170	17.04	1,105,214	38	11.5	100	45	1081	22.2599	3/12/15
		VMW-3C	195 / 190-195	33.83	2,194,214	1	22.0				42.6228	
		VMW-1	150 / 145-150	10.50	440,370	31	12.5	100	29		7.9631	
	Apr-15	VMW-2	170 / 165-170	10.82	453,791		17.5			699	5.7752	
		VMW-3C	195 / 190-195	17.07	715,916		22.0	1			15.2702	
	14 3 44	al lity o					N. 3.5 h. C. F. F.			111211		Maria Maria
		VMW-1	150 / 145-150	11.34	458,590		7				1.8772	
	Jun-15	VMW-2	170 / 165-170	13.81	558,476	30	12	100	28	674	2.6990	7/
		VMW-3C	195 / 190-195	21.46	867,842	i	13				6.3806	
		VMW-1	150 / 145-150	5.70	304,078		12	100			4.3689	
10	Aug-15/Sep-15		170 / 165-170	8.14	434,188	30	12		37	889	3.2223	8/
		VMW-3C	195 / 190-195	10.75	573,405	1	18	1			7.0158	
		VMW-1	150 / 145-150	9.83	559,170		8.0				15.7096	
	Nov-15/Jan-16		170 / 165-170	14.62	798,534	30	12.7	100	68	1635	21.4435	11/10/15
		VMW-3C	195 / 190-195	21.89	1,054,575	1	16.0	1			27.6350	

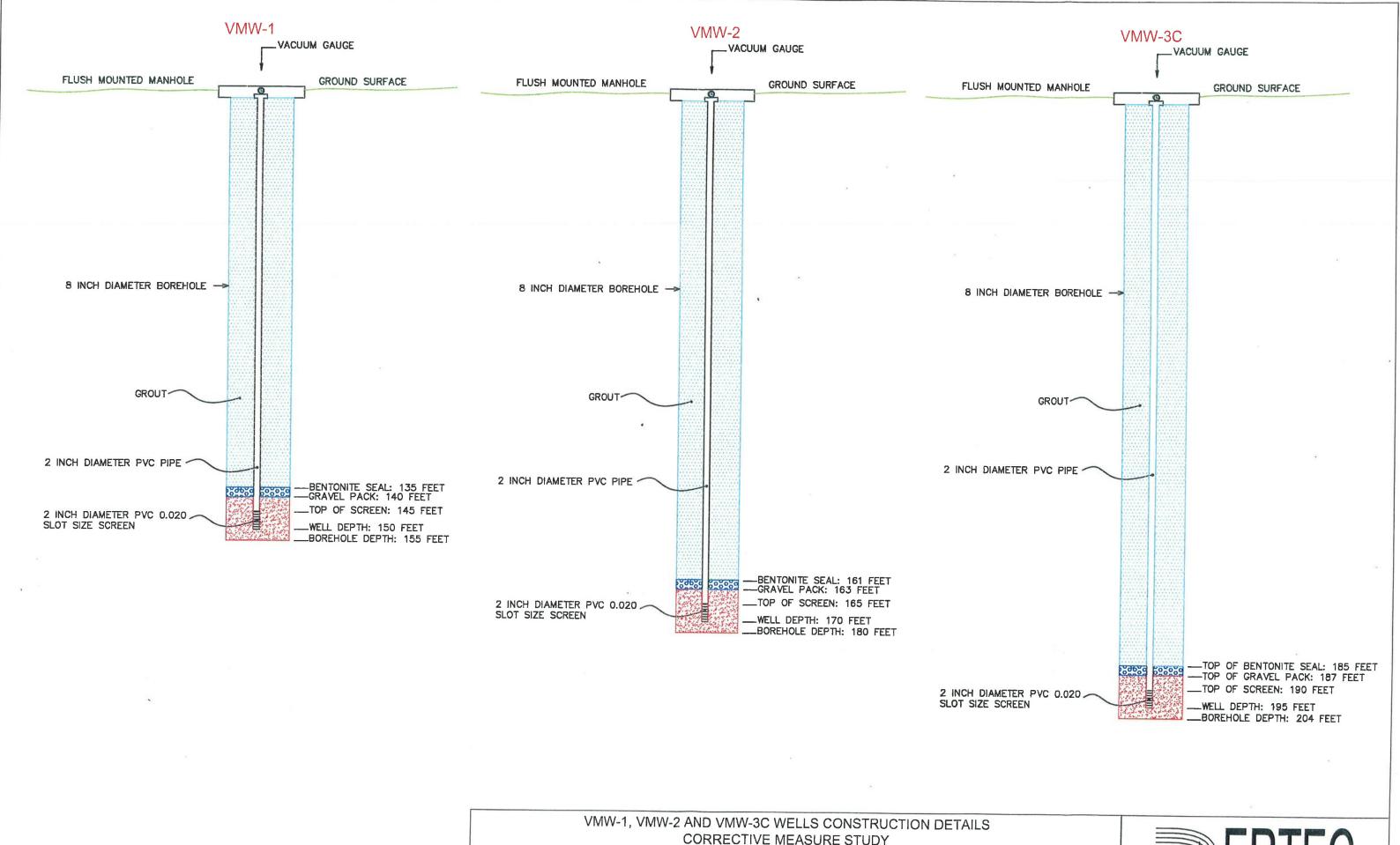
Report	Period	Extraction	Well Depth/	Average	Total	Average Vacuum	Average Vacuum	Operational Time	Operational	Operational	VOC Mass	Carbon Canister
No.	(mo/yr)	Well	Screen Interval	Airflow Rate	Airflow Rate	Inlet Vacuum Pump	Extraction Well	Percentage	Time	Time	Removal	Replacement
100		9	(feet)	(ft³/min)	(ft³/min)/days	(in H ₂ O)	(in H ₂ O)	(%)	(days)	(hours)	(ibs)	Date
		VMW-1	150 / 145-150	8.53	739,039		10.0				16.6619	9/
11	Apr-May 2016	VMW-2	170 / 165-170	14.25	1,234,620	32	12.5	100	60	1444	14.1035	4/1/16
		VMW-3C	195 / 190-195	23.11	2,002,250		17.8				49.5321	# 11 10


_		
	Notes:	
	1/	SVE pulsing/cycling program began on February 22, 2010 after EPA approval.
	2/	Clean up of vacuum extraction wells VMW-2 and VMW-3C performed on August 1, 2 and 9, 2011. Air filter unit and nipple replaced on August 12, 2011.
		Activated carbon unit removed from SVE system on August 10, 2011 based on historical data below 3 lbs/hr or 15 lbs/day.
		SVE found off during September 9, 2011 site visit for monitoring and sampling activities due to electrical power failure on September 8, 2011.
		SVE system did not start on this date. After system verification during September 2011, it was determined that electrical system and blower motor unit was
		damaged. Resume SVE operation on October 27, 2011 after repairs of SVE electrical system and re-installation of repaired blower unit.
	3/	Start up SVE operation on January 23, 2012 after carbon unit installation.
	4/	SVE system check on May 23, 2012 after electrical utilities relocation.
	5/	Extraction procedures from well SVE-1 starting on October 7, 2013 until January 2014.
	6/	Pulsing procedures on 2-months off basis between May and August 2014.
	7/	Verification of system components on July 29, 2015: bleeder, moisture separator, pipelines.
	8/	Pulsing procedures on 2-months off basis after September 2015.
	9/	Verification of system components (blower, particulate filter, moisture separator, vacuum/pressure gauges, and clean up of vacuum extraction wells SVE-1, VMW-1, VMW-2 and
		VMW-3C performed on February 11 and 12, 2016. A second carbon unit installed at SVE system on April 1, 2016.

APPENDIX 1

EXTRACTION AND VACUUM MONITORING WELLS CONSTRUCTION DETAIL

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384



DWG. BY: EGN JOB: E145288

PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

DATE: 07/24/2013 | SCALE: NTS

DRAWN BY: EGN

PFIZER PHARMACEUTICALS LLC ARECIBO, PUERTO RICO

REV.: WIM

FILE: FIGURE

JOB: E145288

APPENDIX 2

CHAIN OF CUSTODY DOCUMENTATION

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384

TestAmerica Burlington

ab Use Only Shipper Name:

30 Community Drive

Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

phone 802-660-1990 fax 802-660-1919 Project Manager. Wanda Morales of 2 cocs Samples Collected By: Roberto Re Jesus Client Contact Information Company: ERTEC, PSC and Josue, Negrow Address: Amur St A-5 Roto. Laudrau Email: Wurvales @ exterpr.com City/State/Zip RPO 1, Pedra 5, PR 00929 Other (Please specify in notes section) Site Contact: Wanda Morgles TA Contact: DON Days OKA Project Name: Prozer Avecebo (5/E) **Analysis Turnaround Time** Arecebo PR Standard (Specify) PO# Rush (Specify) **ASTM D-1946** Other (Please Landfill Gas Canister Canister EPA 25C MA-APH EPA 3C Soil Gas Vacuum in Vacuum in TO-15 Field, "Hg Sample Field, 'Hg Flow Controller Sample Identification Date(s) Time Start | Time Stop (Start) (Stop) ID Canister ID 040116 1940/16 040116 (35) Z585 Temperature (Fahrenheit) Interior Ambient Start Stop 200-32818 Chain of Custody Pressure (Inches of Ha) Interior Ambient Start Special Instructions/QC Requirements & Comments:

0 ther: Trip Blamk 040116. Samples Shipped by: Date/Time: 16 @ Samples Received by: Hoill6 @ 1600 Samples Relinquished by: 10,10 Relinquished by: Date/Time: Received by:

TestAmerica Burlington

phone 802-660-1990 fax 802-660-1919

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

Client Contact Information	Project Mana Phone:	ager: W	anda	Mor	ales	Samples Coll	lected By: R	ober	767	ese	SUF	2	of	2	coc	s			
Company: ELTEC, PSC	Phone:	1797	- 890	72		and To	25 WE 1	100	ro	U	7								
Address: Awar F. A PROTO. iandvall City/State/Zip P.P. P. P	Site Contact TA Contact:	nora)	620	orale	or cou								ection)						ection)
Project Name: ACOZO + 4.00 PG > (TVF)	TA COILLACL		Turnarou										tes s			1	1		tes s
Site: Are 1.3ha DR	C	andard (Sr		nd Time							- 1	- 1	on n			1		- 1	n no
PO#		tush (Speci		<u></u>									cify						cify i
		dan (opec	14/		Y							و	s spe	be					eds e
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum In Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	TO-15	МА-АРН	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
TB040116	040116	/	/	/			4778	X											X
										\neg	\neg			宗 德			=	\dashv	
					nl	B		_	\vdash	-	=	\exists				\dashv	-		_
					211/1/	1116				-	\dashv	\dashv				-		-	_
					04/0	11/10					\dashv	-					-	_	
					(1													
				Temperature	(Fahrenheit)	1.6													
		Interior		Ambient															
	Start			7	_														
	Stop					1													
			$/\!\!-$	Pressure (in	ches of Ho	1													
	Start	Interior		Ambient															
J.	Stop																		
Special Instructions/QC Requirements & Comments other; Trop Blamk of		6 -																	
Samples Shipped by: Poberto Peresus / Rollogherful Samples Relinquished by:	Date/Time;	(6)	600		Samples F	Received by:	ulalica	6	11	601	T	CONTRACTOR OF THE PARTY.	-				-		
Samples Relinquished by:	Date/Time:				Received	by:	7.	1	-		-								
Relinquished by:	Date/Time:				Received		SANC C	Ala	2/16	10	. 14)							
				No.	TOTAL TRANSPORT OF						52600000	Nepher		2018 AN	0/9/02/20	la social	2000	A STATE OF	STORES.
Lab Use Only Shipper Name			20.00		SEA	C Tree	(2) 经产品		A PAR										

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

Client Contact Information	Project Mana	ager: W	Danda	Hora	les	Samples Coll	ected By: T	مامح	As	pe J	وعادع	- 1	of_	1 0	COCs	;		
Company: ERTEC , PSC	Phone: (-78		192 -			y Josue K				-								
Address: Amur ST. As Roto Landiau City/State/Zip Ris Pledics, PL 00921 Phone: (787) - 722 - 8902	احب :Email				on								-		Т		Т	
City/State/Zip Ris Pledras, PL 00921				,									÷			1	1	-
Phone: (78+) - 791 - 1902	Site Contact	ممص	da H	prale						- 1			section)					흥
FAX: (71+) - +83 - 5515	TA Contact:	DOIL	Dan	sicki									s se				1	s se
Project Name: Pfizer Arecibo (SVE)		Analysis	Turnarou	nd Time									ote				1	l ge
Site: Arecibo . / L	SI	andard (Sp	ecify)	V									in'			- 1		اةِ ا
PO#		ush (Speci											ecify			- 1		ecify
												ASTM D-1946	Other (Please specify in notes	Sample Type		Ā	as s	Other (Please specify in notes section)
				Canister Vacuum in	Canister Vacuum in				MA-APH	ပ္က	EPA 25C	∸	JE.	ole	Indoor Air	Ambient / Soil Gas	Landfill Gas	E
	Sample			Fleld, "Hg	Field, 'Hg	Flow Controller		T0-1	A A	EPA 3C	A	Ĕ	her		용	Ambient Soil Gas	P P	늘
Sample Identification	Date(s)	MANAGEMENT OF THE PARTY	Time Stop	(Start)	(Stop)	ID	Canister ID	1	Ž	ii i	Ü	Ä	ŏ	6	Ĕ	S A	La	8
VMW-1-21	050216	1309	/	/	/		4011	X								×		
VHW-2-21	050216	1317	/	/	/		3660	×								×		
VHW-3C-21	050216	1326					4261	×								×		
INIet - 21	050216	1334					3569	X								×		
Stack-21	050216	1344				/	5894	X								بر		
				Temperature	(Fahrenhelt		_											_
		Interior		Ambient				1										
1	Start				.1			1	((88)88)	THE HELL								.
	-				N			-										
	Stop					1												
				Pressure (In	ches of Hg)			Г							Ш			
		Interior		Ambient				1 2	300 3.	2207								
	Start							1 '	-00-0,	009/ (unain	of Cu	ıstody					
	Stop					ļ		-										
Special Instructions/QC Requirements & Comments	0.00	1-		0.1106	101	21. 2.4	lastic		~ ^				1.	De			_	
special instructions/QC Requirements & Comments & Comments & FedEX (samp	103/	16.	COILE!	TEC	04 05	102/16	, 2	ولا	Wr	-e	u	N	ĭ/				
Samples Shipped by: Tesus/Rollenter	Date/Time/	3/161	@ 10	200	Samples	Received by:	5-03-16	o a) (00	0							
Samples Relinquished by:	Date/Time:	1	<u> </u>		Received	by:	11/4					12	4					
Relinquished by:	Date/Time:				Received		-		, 1	<u></u>		1						
	1																	

lestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

phone 802-660-1990 fax 802-660-1919

Client Contact Information	Project Mana	ager: い	anda	Morale	: 1	Samples Coll	ected By: F	أعطما	do t	oc 7	34	ı	of 2	coc	s			_
Company: EFTEC PSC	Phone:	7)-7	7-69	۵2		suzothus	Near	in										-
Address: Amur St. As Roto Landrau City/State/Zip Rro Picdres PR 00921 Phone: (787) - 792 - 3902 FAX: (787) - 783 - 5555 Project Name: Pfizer Areciba (5UE) Site: A	Email: ພວ				(Dm		,			: 1		- 1						
Phone: (T. P.)													.5				- 1	2
FAX: (707) - 703 - 5555	Site Contact	Wa	<u>nda</u>	Moral	રડ					-			section)				1	section)
Project Name: PC: 4	TA Contact:												SS SE					SS
Site: Arceibo PR			Turnarou										note					ote
Free Do PE	St	andard (Sp	ecify):	_					-	81			Y II					Ē
13.3384	R	ush (Speci	ify)								1		ecil					l G
								1				46	Other (Please spe		_			Other (Please specify in notes
				Canister	Canister			1			0	5	leas	1	Ā		Gas	eas
	Sample			Vacuum in	Vacuum In			02	14A	30	25	N	T.	0.7	en	Sas	=	Ē
Sample Identification	Date(s)	Time Start	Time Stop	Fleld, "Hg (Start)	Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please Sample Typ	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	量
	MANUFACTURE NAME OF THE PARTY O							-	<u> </u>	ш.	-4-	-	O MON	느	_<	S	ات	읙
VMW - 1 - 22	053116	1427					4163	X		- ;						X		
VMW-2-22	023116	1435					5027	X								X		
NHM-3C-75	053116	1444					4907	X										
Irlet - 22	053116						5112	X		-						\Diamond	\dashv	\dashv
SUE -A	053116	1456					3627	X									\dashv	\dashv
Stack-22	053116						4439			-		\neg	98073			\Diamond	\dashv	
1				Temperatur	(Fahrenheit		11171			-			100000		١			
		Interior		Ambient	a (i ginalilieli	, 		4	[[]]						i			
	Start			Allibient				-									9.0	- 1
	otart				-1-													- 1
	Stop				MA				11111				Man ing india	((1)	l			- 1
(*)				Pressure (in	ches of Hg)			1	200	-3379	9 Cha	in of C	Custody					-
		Interior		Ambient		T		1	`									
-	Start		/					1										- 1
								4										- 1
Special Instructions/QC Requirements & Comments	Stop									1								
Samples were collected	i n. 1001	3.116			4.1	ا ما ا	. + -											
Series Sanctia	- C.5	13.1.4	, 366	······································	22111	surpra	e~ 6	D L	=e∪	Ex		0.4	. 06	101	116			- 1
															•			- 1
																		- 1
Samples Shipped by: Roberdo De Issu / Roll Strain	Date/Time:		100	A	Samples I	Received by:			_	_								
Samples Relinquished by	06/01/	16 (1)	100	<u>U</u>		x 06/01	116 @	_ /	OC	0								
Samples Relinquished by!	Date/Time:				Received	by:		-	P	7	1.1	11	100					
Relinquished by:	Date/Time:				Desert	The	_	<u>دي</u>	61	21	10	10	30					
,	Date/ HITIO;				Received	by:												
	MACHINE MACHINE			and grade and				PARTER	S. S	Clesson C		al Your and	S. A. CHILLIAN D.	OCCUPATION IN	Transcour.			
Lab Use Only Shinner Name	ON THE RESERVE OF THE PERSON O	35000000000000000000000000000000000000						张原原		SOUTH BE			新兴	CONTRACTOR OF	24570	Coul Solo	ALEXA DE	

lestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

						T												
Client Contact Information	Project Mana	ager: 👊	Danda	- More	des	Samples Coll	lected By:	Robe	do !	的	الفائة	2	of 2	COC	s			
Company: ERTEC, PSC	Phone: (78	7 - 7	37-80	io 2		and Jos	soe De	aro.	<u> </u>			Marine Scale	-					
Address: Anur St. As Exto Landon City/State/Zip Rio Picoras FR 00921 Phone: (787) - 792 - 9902	Email: •	mora	les@	except	· com			1		: 1								
Phone (722) 700 Picchas PR 00921	Cit- Ct- t		1	,		1					1	1	E				1	=
FAX: (337) - 783 - 5555 Project Name: Pfizer Arccibo SUE	Site Contact TA Contact:	- War	KIR M	opter						-			ectic				- 1	읈
Project Name: PS 724 Accibo SOF	TA COTTACE.					ł						1	es s				- 1	SS
Site: Arccibo, PR	-		Turnarou	na i ime		1							пот			- 1	- 1	age
TO# 15.5384		tandard (Sp				1							ify ir		1		- 1	ř.
1 13 3394		Rush (Speci	ity)					-					sbec		.		- 1	peci
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Fleid, "Hg (Start)	Canister Vacuum in Fleid, 'Hg (Stop)	Flow Controller	Canister ID	TO-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
TB 053116	me the same						3353	V					15.00		-			洪
10 033110	0231110						2225	hightarrow			_	_						Δ
												\nearrow						\angle
																	7	\dashv
						 						\dashv				-	4	_
													46.5	1		4		
														District Control		1		
										-				1				
v				Temperatur	e (Fahrenhei	t)		1					16mar					-
,		Interior		Ambient				1										
	Start				,			1										- 1
_	Stop				MA	1		-										
	Ctop			Duna and fin	<u>/ A</u>	<u> </u>		-		- ;								
		Interior		Pressure (ir	icnes of Hg)			4		- 8								
	Start	Interior	$-\!\!/$	Ambient				4		i								
								4		2.0								
Special Instructions/OC Requirements & Comments	Stop		/	<u></u>										_,				
Special Instructions/QC Requirements & Comments Secure with Swipment Samples Shipped by:		edEx	ip Ble ou	06 (0)			ere c	<i>)((</i> (204	bed	6	K	05/3	716	2)			
Roberto D. Trus / MANGAINAIN	Date/Time:	16 @	100	20	Samples	Received by:	. 6	11	20	0								
Samples Relinquished by:	Date/Time:	10 60			Received	Hy	16 (0	10	111		130	-/						
Relinquished by:	Date/Time:				Received		5 6	121	16	10								
					1.0001160	. ~y.				1								
Lab Use Only Shipper Name	dr. are	1000		militaria de la			1700	A PARK					the second	100		ALC: N	W.	150

APPENDIX 3

DATA VALIDATION REPORTS

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384

April 28, 2016

Ms. Wanda Morales ERTEC Amur St. A - #5 Reparto Landrau Rio Piedras, PR 00921

RE: Data Validation Report for the SVE TO-15 Air Monitoring of the Pfizer Arecibo Site

Dear Wanda,

Enclosed is the validation report for the air samples collected on April 1, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-32818:

		V D 40 V L 1 20	
STACK-20	INLET-20	VMW-1-20	
VMW-2-20	VMW-3C-20	SVE-A	
	V 101 11 3 C 2 C	5,21.	
TB040116			

The data package was received for validation on April 20, 2016. The laboratory performed well, but some qualifications of sample results was necessary. The laboratory-applied "J" qualifier applied to the result for carbon tetrachloride in STACK-20 to indicate a concentration between the method detection limit (MDL) and the reporting limit (RL) was not removed by the validator.

All samples were analyzed for acetone, methylene chloride, chloroform, and carbon tetrachloride in conformance with the specifications of USEPA Compendium Method TO-15. The validation effort was restricted to the reported results and supporting data for these compounds.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Ms. Wanda Morales April 28, 2016 Page 2 of 2

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

If you have any questions regarding this report, please give me a call at 225-355-0163 or contact me by e-mail at engrid@eden-env.com

Kindest regards,

Engrid S. Carpenter

Enquid Carpenter

President

ANALYTICAL DATA VALIDATION

ERTEC JOB DESCRIPTION – PFIZER ARECIBO – SVE ERTEC JOB NUMBER –15-5384

ORGANIC ANALYSIS DATA

Prepared by: TestAmerica Laboratory, Burlington Vermont Sample Delivery Group: 200-32818 Selected Volatile Organic Compounds in Air Samples

VALIDATION REPORT

Prepared by: Eden Environmental, LLC Eden Project Number 13103

Date: April 28, 2016

INTRODUCTION

Enclosed is the validation report for the air samples collected on April 1, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-32818:

STACK-20	INLET-20	VMW-1-20	
		SVE-A	
VMW-2-20	VMW-3C-20	SVE-A	
TB040116			

The data package was received for validation on April 20, 2016. The laboratory performed well, but some qualifications of sample results was necessary. The laboratory-applied "J" qualifier applied to the result for carbon tetrachloride in STACK-20 to indicate a concentration between the method detection limit (MDL) and the reporting limit (RL) was not removed by the validator.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Volatile Organic Analysis of Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

I. Holding Times, Preservation, and Sample Integrity

All TO-15 analyses were performed within holding time. A copy of the Laboratory Login Sample Receipt Checklist noted that all samples were received in good condition with cooler and container custody seals intact. Copies of the chain of custody records were also present in the data package and included all of the samples in this data set. Therefore, all requirements for holding times and sample integrity were met. No physical preservation requirements are specified for Summa® canisters.

II. GC/MS Instrument Performance Checks

Results were reported for three bromofluorobenzene (BFB) instrument performance checks. Requirements for all three instrument performance checks were met.

III. Calibration

These samples were analyzed on a single gas chromatography/mass spectrometry (GC/MS) system identified as "CHC." No evidence was presented in the data package to indicate that manual integrations were performed on any of the project-specified target compounds or on any of the internal standards in any of the calibration standards.

A. Initial Calibration (IC) and Initial Calibration Verification (ICV)

IC was established on April 3-4, 2016. An ICV was analyzed following the IC. EPA Region II-specified acceptance criteria were met for all of these standards.

B. Continuing Verification (CV)

Documentation of two CV standards was present in the data package. All reported sample analyses were associated with these standards, and all EPA Region II-specified acceptance criteria were met.

IV. Blanks

A laboratory blank was analyzed in each analytical sequence containing the site samples. No project-specified target analytes were detected in either of the laboratory blanks.

A trip blank (TB040116) was submitted with the samples in this data set. No project-specified target analytes were detected in TB040116.

V. Surrogate Recoveries

The use of a surrogate compound is not addressed in Method TO-15. A surrogate compound was not employed in the analyses of these samples.

VI. Laboratory Check Standard (Audit Accuracy Standard)

A 10 ppbv laboratory check standard (identified as LCS) was analyzed in each analytical sequence containing the reported samples. Each LCS was spiked with all of the project-specified target analytes at 10 parts per billion volume to volume (ppb v/v). With the exception of acetone (142%) in the LCS analyzed on April 11, 2016, recoveries of the target analytes were within the quality control limits specified by the validation guidance document (70-130%).

The high recovery of acetone in the LCS noted above suggests the potential for reporting false positives and/or high bias to positively reported results. Acetone was not detected in either of the associated sample analyses (the more diluted analyses of VMW-3C-20 and SVE-A) and no action was warranted on this basis. The laboratory-applied "*" qualifier used to indicate a result associated with an unacceptable LCS result were removed by the validator.

VII. Laboratory Replicate Analyses

STACK-20 was analyzed as a laboratory replicate. Reproducibility between positively paired results for acetone (4 relative percent difference [RPD]) and carbon tetrachloride (0 RPD) was within the laboratory-specified acceptance limits (\leq 25 RPD). Methylene chloride and chloroform were not detected in either analysis of this sample; therefore, no further quantitative evaluation of precision could be made from these data.

VIII. Field Duplicates

Collection of true field duplicates is not feasible for air samples; therefore, a better description of these quality control samples would be co-located samples. The validation guidance document does not provide an acceptance criterion for RPDs between reported concentrations in "field duplicate" samples. For the purpose of this validation effort, a maximum acceptance limit of 100 RPD was used to define acceptable agreement between reported results in the co-located samples. Results with RPD values greater than 100 RPD should be used with caution as the concentration and source of these compounds in the reported samples is uncertain.

SVE-A is a co-located sample of VMW-3C-20. Agreement between results for chloroform (3 RPD) and carbon tetrachloride (1 RPD) were acceptable. Acetone and methylene chloride were not detected in either of these samples; therefore, no further quantitative evaluation of precision could be made from these data.

IX. Internal Standard Performance

The validator confirmed that the areas and retention times of all three internal standards were within the method-specified acceptance limits for the reported site and quality control analyses.

X. Target Compound Identification

When detected, the target analyte was correctly identified with acceptable supporting mass spectral data present in the data package.

XI. Compound Quantitation and Reporting Limits (RLs)

All sample results and RLs were correctly calculated and accurately reported, including adjustments for dilutions, where necessary.

Results for carbon tetrachloride in VMW-3C-20 and SVE-A exceeded the calibration range of the instrument and were qualified as estimated (J) on this basis. Both samples were reanalyzed and concentrations of carbon tetrachloride were within the calibration range in the more-diluted analyses. The validator "hybridized" the less-diluted laboratory answer forms for both of these samples to indicate the results that are recommended for use. The more-diluted laboratory answer forms were marked "Do Not Use" for clarity. The validator removed all "E" and "D" qualifiers applied by the laboratory to indicate a concentration that exceeded the calibration range and a result from a more-diluted analysis, respectively.

A RL of ≤0.50 ppbv is a required performance criterion for this project. The low concentration standards in the IC were 0.50 ppbv for methylene chloride, 0.20 ppbv for chloroform, and 0.04 ppbv for carbon tetrachloride. The unadjusted RLs are equivalent to or higher than the low concentration standard used to establish the IC and are supported by the reported data.

The low concentration IC standard for acetone was 5.0 ppbv, which is also the RL used for this analyte and supported by the reported data. The RL for acetone does not meet the performance criterion for this project, but does reflect the best efforts of the laboratory.

The laboratory-applied "J" qualifier applied to the result for carbon tetrachloride in STACK-20 to indicate a concentration between the MDL and the RL was not removed by the validator.

XII. Tentatively Identified Compounds (TICs)

Library searches were not requested for these samples.

XIII. Documentation

The laboratory "samples received by" signature is illegible.

All of the laboratory sample receipt information was provided on the laboratory-generated Login Sample Receipt Checklist, which confirmed that all samples were properly documented and shipped in custody sealed containers.

A copy of the FedEx airbill was included in the data package to document the transfer of the samples from the field to the laboratory.

The Laboratory Analytical Data Forms also include a column identified as MDL. Unadjusted MDLs for the target compounds are not supported by the data as received. Therefore, it is recommended that the RLs rather than the MDLs be used as the lowest supported limit of detection.

XIV. Overall Assessment

Findings of the validation effort resulted in the following qualifications of sample results:

• Results for carbon tetrachloride in less-diluted analyses of VMW-3C-20 and SVE-A were qualified as estimated (J) because the concentrations exceeded the calibration range of the instrument. Both samples were reanalyzed and concentrations of carbon tetrachloride were within the calibration range in the more-diluted analyses.

The validator "hybridized" the less-diluted laboratory answer forms for VMW-3C-20 and SVE-A to indicate the results recommended for use. The more-diluted laboratory answer forms were marked "Do Not Use" for clarity. The validator removed all "E" and "D" qualifiers applied by the laboratory to indicate a concentration that exceeded the calibration range and a result from a more-diluted analysis, respectively.

The laboratory-applied "*" qualifier used to indicate a result associated with an unacceptable LCS result were removed by the validator.

The laboratory-applied "J" qualifier applied to the result for carbon tetrachloride in STACK-20 to indicate a concentration between the MDL and the RL was not removed by the validator.

This validation effort is based on the data as provided by the laboratory. Software manipulation cannot be routinely detected during validation and is outside the scope of this review.

This validation report should be added to the data package for all future distributions of the TO-15 data reported in SDG 200-32818.

ATTACHMENT A LABORATORY ANALYTICAL DATA FORMS

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

STACK-20

Lab Sample ID:

200-32818-6

Client Matrix:

Air

Date Sampled: 04/01/2016 1418 Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch: 200-102942

Instrument ID:

CHC.i

Prep Method: Dilution:

Summa Can 1.0

Prep Batch:

N/A

Lab File ID:

19287_15.D

Analysis Date:

Initial Weight/Volume: 200 mL

04/08/2016 2310

Final Weight/Volume:

200 mL

Prep Date:

04/08/2016 2310

Injection Volume:

200 ml

04/00/2010 2510		injec	tion volume:	200 ML	
Analyte	Result (ppb v/v)	Qualifier	MDL	RL	
Acetone	6.8		0.86	5.0	
Methylene Chloride	0.50	U	0.18	0.50	
Chloroform	0.20	U	0.082	0.20	
Carbon tetrachloride	0.18	J	0.032	0.20	
Analyte	Result (ug/m3)	Qualifier	MDL	RL	
Acetone	16		2.0	12	
Methylene Chloride	1.7	U	0.63	1.7	
Chloroform	0.98	U	0.40	0.98	
Carbon tetrachloride	1.1	J	0.20	1.3	

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

INLET-20

Lab Sample ID:

200-32818-5

Client Matrix:

Air

Date Sampled: 04/01/2016 1409

Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch: 200-102942

Instrument ID:

CHC.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

19287_14.D

Dilution: Analysis Date: 3100

Initial Weight/Volume: 46 mL Final Weight/Volume:

Prep Date:

04/08/2016 2217 04/08/2016 2217

Injection Volume:

200 mL 200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	16000	U	2700	16000
Methylene Chloride	1600	U	560	1600
Chloroform	3600		250	620
Carbon tetrachloride	110000		99	620
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	37000	U	6300	37000
Methylene Chloride	5400	U	1900	5400
Chloroform	18000		1200	3000
	710000		620	3900

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

VMW-1-20

Lab Sample ID:

200-32818-1

04/08/2016 1845

04/08/2016 1845

Client Matrix:

Air

Date Sampled: 04/01/2016 1337

Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Prep Method:

Summa Can

Analysis Batch: 200-102942

Instrument ID:

CHC.i

Dilution: Analysis Date:

Prep Date:

5880

Prep Batch:

N/A

Lab File ID:

19287_10.D

Final Weight/Volume: 200 mL

Initial Weight/Volume: 24 mL

Injection Volume:

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	29000	U	5100	29000
Methylene Chloride	2900	U	1100	2900
Chloroform	3700		480	1200 '
Carbon tetrachloride	200000		190	1200
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	70000	U	12000	70000
Methylene Chloride	10000	U	3700	10000
Chloroform	18000		2400	5700
Carbon tetrachloride	1200000		1200	7400

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

VMW-2-20

Lab Sample ID:

200-32818-2

Client Matrix:

Air

Date Sampled: 04/01/2016 1345

Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Summa Can

Analysis Batch: 200-102942

Instrument ID:

CHC.i

Prep Method: Dilution:

Prep Batch:

N/A

Lab File ID:

19287_11.D

2840

Initial Weight/Volume: 54 mL Final Weight/Volume:

Analysis Date: Prep Date:

04/08/2016 1938 04/08/2016 1938

Injection Volume:

200 mL 200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	14000	U	2400	14000
Methylene Chloride	1400	U	510	1400
Chloroform	2300		230	570
Carbon tetrachloride	76000		91	570
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	34000	U	5800	34000
Methylene Chloride	4900	U	1800	4900
Chloroform	11000		1100	2800
Carbon tetrachloride	480000		570	3600

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

VMW-3C-20

Lab Sample ID:

200-32818-3

Client Matrix:

Air

Date Sampled: 04/01/2016 1354

Date Received: 04/02/2016 1010

TO-15 Volat	ile Organio	Compounds	in	Ambient A	١ir
-------------	-------------	-----------	----	------------------	-----

Analysis Method: TO-15

Analysis Batch: Prep Batch:

04/28/16

200-102942

Instrument ID:

CHC.i

Prep Method:

Summa Can

N/A

Lab File ID:

19287_12.D

Dilution:

1670, 4460 04/08/2016 2031

Initial Weight/Volume:

28 mL

Analysis Date: Prep Date:

Final Weight/Volume: Injection Volume:

200 mL

04/08/2016 2031

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	8400	U	1400	8400
Methylene Chloride	840	U	300	840
Chloroform	3500		140	330
Carbon tetrachloride	00008 00008	-E	53 140	330 890
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	20000	U	3400	20000
Methylene Chloride	2900	U	1000	2900
Chloroform	17000		670	1600
Carbon tetrachloride	560000 S10000	- -	340 900	2100 56 00

ese 04/28/16

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

VMW-3C-20

Lab Sample ID:

200-32818-3

Client Matrix:

Аіг

Date Sampled: 04/01/2016 1354 Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-103013

Instrument ID:

OHC.I

Prep Method: Dilution:

Summa Can

Prep Batch:

N/A

Lab File ID:

19329_05.D

Analysis Date:

4460

Run Type:

DL

Initial Weight/Volume/ Final Weight/Volume: 38 mL

Prep Date:

04/11/2016 1501 04/11/2016 1501

Injection Volume/

MOK

3800

800

370

140

200 mL 200 mL

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Result (ppb v/v) 22000 2200 3600 80000

UZ U D-

Qualifier

RL

Analyte Acetone

Methylene Chloride Chloroform Carbon tetrachloride

Result (ug/m3) 53000 7700 17000 510000

Qualifie MDL 9100 2800 1800 900

5600

04/28/16

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

SVE-A

Lab Sample ID:

200-32818-4

Client Matrix:

Air

Date Sampled: 04/01/2016 1359

Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Prep Method:

Analysis Batch:

200-102942

Instrument ID:

CHC.i

Dilution:

Summa Can

Prep Batch:

N/A

Lab File ID:

19287_13.D

Analysis Date:

1990, 4180 04/08/2016 2124

ere 04/28/16

Initial Weight/Volume: Final Weight/Volume:

MDL

MDL

23 mL

Prep Date:

04/08/2016 2124

Injection Volume:

200 mL 200 mL

RL

RL

24000

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

1000 3400 84000 79000

U E

Qualifier

Ú

U

U

Qualifier

1700 10000 360 1000 160 64 130

400 400 840

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Result (ug/m3) 24000 3500 17000 5000,00P GOOGES

Result (ppb v/v)

10000

4100 1200 800 400 840

3500 1900 2500 5300

ere 04/28/16

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

SVE-A

Lab Sample ID:

200-32818-4

Client Matrix:

Dilution:

Prep Date:

Air

Date Sampled: 04/01/2016 1359 Date Received: 04/02/2016 1010

TO-15 Volatile Organ	ic Compounds	in Ambient Air
10-10 Volatile Oldai	nc compounds	III AIIIMICIIL AII

Analysis Method: Prep Method:

Analysis Date:

TO-15 Summa Can

4180

Analysis Batch: Prep Batch:

200-103013 N/A

Lab File ID:

Qualifier

U

Instrument ID: CHC.i 19329_06.D

Initial Weight/Volume:

40 mL

Final Weight/Volume:

200 mL

04/11/2016 1554

04/11/2016 1554

Run Type:

DL

Injection Volume:

MDL

3600

750

340

130

200 mL

RL

21000

2100

Analyte Acetone Methylene Chloride Chloroform

Carbon tetrachloride

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride Result (ppb v/v) 21000 2100 3500 79000

7300

17000

490000

U D D Result (ug/m3) 50000

Qualifier MDL Ur 8500 U 2600 1700 840

4100

5300

Client: Ertec

Job Number: 200-32818-1

Sdg Number: 200-32818-1

Client Sample ID:

TB040116

Lab Sample ID:

200-32818-7

Client Matrix:

Аіг

Date Sampled: 04/01/2016 0000

Date Received: 04/02/2016 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-102942

Instrument ID:

CHC.i

Prep Method:

Prep Batch:

N/A

Lab File ID:

19287_17.D

Dilution:

Acetone

Analyte

1.0

Result (ppb v/v)

Result (ug/m3)

Analysis Date:

Initial Weight/Volume:

Qualifier

Qualifier

200 mL

Prep Date:

04/09/2016 0056 04/09/2016 0056

Summa Can

Final Weight/Volume: Injection Volume:

200 mL 200 mL

04/0

5.0 0.50 Ū U U

Ū

0.86 0.18 0.082

MDL

2.0

MDL

RL 5.0

Methylene Chloride
Chloroform
Carbon tetrachloride

0.20 0.20

U

0.032

0.50 0.20 0.20

RL

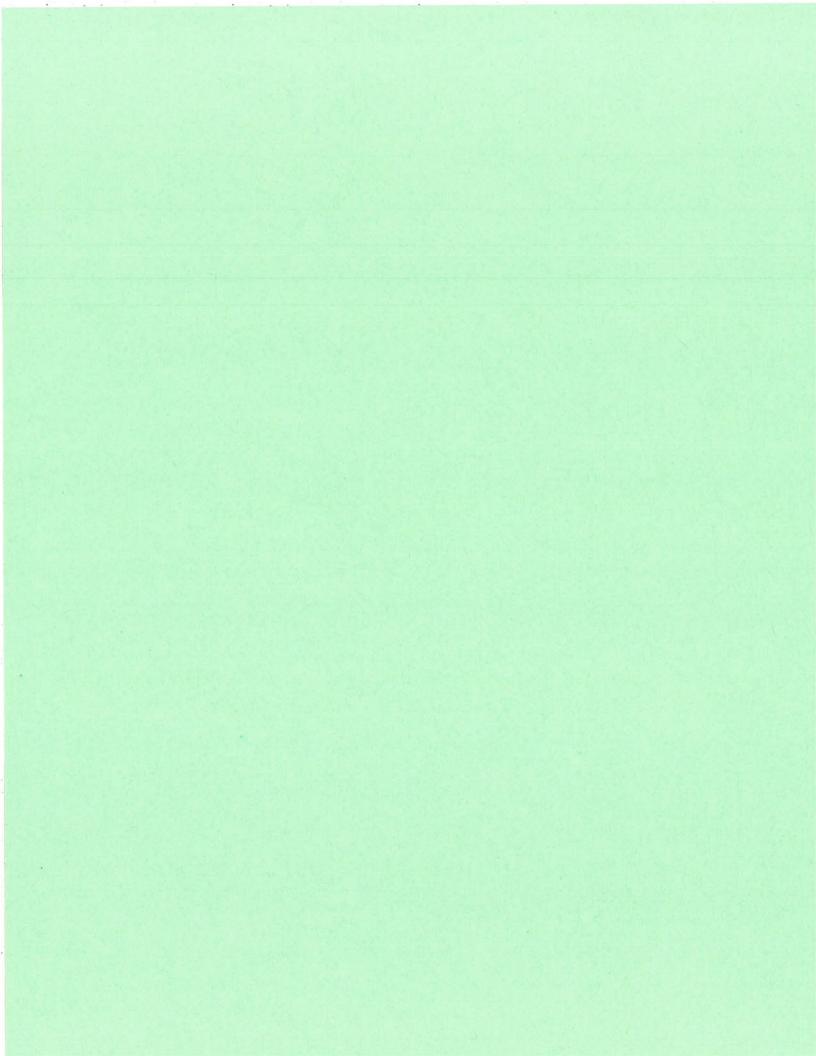
12

Acetone
Methylene Chloride
Chloroform
Carbon tetrachloride

1.7 0.98 1.3

12

U 0.63 U 0.40 U 0.20


1.7 0.98 1.3

ATTACHMENT B

EPA REGION II QUALIFIERS AND THEIR DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity; but the result may be biased high.
- J- The result is an estimated quantity; but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

May 24, 2016

Ms. Wanda Morales ERTEC Amur St. A - #5 Reparto Landrau Rio Piedras, PR 00921

RE: Data Validation Report for the SVE TO-15 Air Monitoring of the Pfizer Arecibo Site

Dear Wanda,

Enclosed is the validation report for the air samples collected on May 2, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-33397:

STACK-21	INLET-21	VMW-1-21
VMW-2-21	VMW-3C-21	

The data package was received for validation on May 18, 2016. The laboratory performed well, but some qualifications of sample results were necessary. The laboratory-applied "E" and "D" qualifiers used to indicate concentrations above the calibration range and results from a more diluted analysis, respectively, were removed by the validator.

All samples were analyzed for acetone, methylene chloride, chloroform, and carbon tetrachloride in conformance with the specifications of USEPA Compendium Method TO-15. The validation effort was restricted to the reported results and supporting data for these compounds.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Ms. Wanda Morales May 24, 2016 Page 2 of 2

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

If you have any questions regarding this report, please give me a call at 225-355-0163 or contact me by e-mail at engrid@eden-env.com

Kindest regards,

Engrid S. Carpenter

Engrid Carpenter

President

ANALYTICAL DATA VALIDATION

ERTEC JOB DESCRIPTION – PFIZER ARECIBO – SVE ERTEC JOB NUMBER –15-5384

ORGANIC ANALYSIS DATA

Prepared by: TestAmerica Laboratory, Burlington Vermont Sample Delivery Group: 200-33397 Selected Volatile Organic Compounds in Air Samples

VALIDATION REPORT

Prepared by: Eden Environmental, LLC Eden Project Number 13103

Date: May 24, 2016

INTRODUCTION

Enclosed is the validation report for the air samples collected on May 2, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-33397:

STACK-21	INLET-21	VMW-1-21
VMW-2-21	VMW-3C-21	

The data package was received for validation on May 18, 2016. The laboratory performed well, but some qualifications of sample results were necessary. The laboratory-applied "E" and "D" qualifiers used to indicate concentrations above the calibration range and results from a more diluted analysis, respectively, were removed by the validator.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Volatile Organic Analysis of Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

I. Holding Times, Preservation, and Sample Integrity

All TO-15 analyses were performed within holding time. A copy of the Laboratory Login Sample Receipt Checklist noted that all samples were received in good condition with custody seals intact. A copy of the chain of custody record was also present in the data package and included all of the samples in this data set. Therefore, all requirements for holding times and sample integrity were met. No physical preservation requirements are specified for Summa® canisters.

II. GC/MS Instrument Performance Checks

Results were reported for six bromofluorobenzene (BFB) instrument performance checks. Requirements for all six instrument performance checks were met.

III. Calibration

These samples were analyzed on three gas chromatography/mass spectrometry (GC/MS) systems identified as "CHB," "CHC," and "CHG." Manual integrations were performed for carbon tetrachloride in 0.04 parts per billion volume/volume (ppb v/b) on instrument CHC and for chloroform in the 0.20 ppb v/v standard on instrument CHG. Documentation of these integrations was included in the data package and confirmed that they were properly performed correctly incorporated into the associated quantitation report. No evidence was presented in the data package to indicate that manual integrations were performed on any of the remaining project-specified target compounds or on any of the internal standards in any of the calibration standards.

A. Initial Calibration (IC) and Initial Calibration Verification (ICV)

ICs were established on May 3, 2016, on instrument CHB, on April 25, 2016, on instrument CHC, and on April 13-14, 2016 on instrument CHG. An ICV was analyzed following each IC. EPA Region II-specified acceptance criteria were met for all of these standards.

B. Continuing Verification (CV)

Documentation of three CV standards, one on each instrument, was present in the data package. All reported sample analyses were associated with these standards, and all EPA Region II-specified acceptance criteria were met.

IV. Blanks

A laboratory blank was analyzed in each analytical sequence containing the site samples. No project-specified target analytes were detected in either of the laboratory blanks.

V. Surrogate Recoveries

The use of a surrogate compound is not addressed in Method TO-15. A surrogate compound was not employed in the analyses of these samples.

VI. Laboratory Check Standard (Audit Accuracy Standard)

A 10 ppbv laboratory check standard (identified as LCS) was analyzed in each analytical sequence containing the reported samples. Each LCS was spiked with all of the project-specified target analytes at 10 ppb v/v. All recoveries of the target analytes were within the quality control limits specified by the validation guidance document (70-130%).

VII. Laboratory Replicate Analyses

STACK-21 was analyzed as a laboratory replicate. Reproducibility between positively paired results for chloroform (3 relative percent difference [RPD]) and carbon tetrachloride (0.7 RPD) was within the laboratory-specified acceptance limits (≤25 RPD). Acetone and methylene chloride were not detected in either analysis of this sample; therefore, no further quantitative evaluation of precision could be made from these data.

VIII. Field Duplicates

Collection of true field duplicates is not feasible for air samples; therefore, a better description of these quality control samples would be co-located samples. The validation guidance document does not provide an acceptance criterion for RPDs between reported concentrations in "field duplicate" samples. For the purpose of this validation effort, a maximum acceptance limit of 100 RPD was used to define acceptable agreement between reported results in the co-located samples. Results with RPD values greater than 100 RPD should be used with caution as the concentration and source of these compounds in the reported samples is uncertain. No co-located samples were included in this data set.

IX. Internal Standard Performance

The validator confirmed that the areas and retention times of all three internal standards were within the method-specified acceptance limits for the reported site and quality control analyses.

X. Target Compound Identification

When detected, the target analyte was correctly identified with acceptable supporting mass spectral data present in the data package.

XI. Compound Quantitation and Reporting Limits (RLs)

All sample results and RLs were correctly calculated and accurately reported, including adjustments for dilutions, where necessary.

Results for carbon tetrachloride in Stack-21, Inlet-21, VMW-1-21, and VMW-2-21 exceeded the calibration range of the instrument and were qualified as estimated (J) on this basis. All four of these samples were reanalyzed and concentrations of carbon tetrachloride were within the calibration range in the more-diluted analyses. The validator "hybridized" the less-diluted laboratory answer forms for these samples to indicate the results that are recommended for use. The more-diluted laboratory answer forms were marked "Do Not Use" for clarity. The validator removed all "E" and "D" qualifiers applied by the laboratory to indicate a concentration that exceeded the calibration range and a result from a more-diluted analysis, respectively.

A RL of ≤0.50 ppbv is a required performance criterion for this project. The low concentration standards in the IC were 0.50 ppbv for methylene chloride, 0.20 ppbv for chloroform, and 0.04 ppbv for carbon tetrachloride. The unadjusted RLs are equivalent to or higher than the low concentration standard used to establish the IC and are supported by the reported data.

The low concentration IC standard for acetone was 5.0 ppbv, which is also the RL used for this analyte and supported by the reported data. The RL for acetone does not meet the performance criterion for this project, but does reflect the best efforts of the laboratory.

XII. Tentatively Identified Compounds (TICs)

Library searches were not requested for these samples.

XIII. Documentation

The laboratory "samples received by" signature is illegible.

All of the laboratory sample receipt information was provided on the laboratory-generated Login Sample Receipt Checklist, which confirmed that all samples were properly documented and shipped in custody sealed containers.

A copy of the FedEx airbill was included in the data package to document the transfer of the samples from the field to the laboratory.

The Laboratory Analytical Data Forms also include a column identified as MDL. Unadjusted MDLs for the target compounds are not supported by the data as received. Therefore, it is recommended that the RLs rather than the MDLs be used as the lowest supported limit of detection.

XIV. Overall Assessment

Findings of the validation effort resulted in the following qualifications of sample results:

• Results for carbon tetrachloride in less-diluted analyses of Stack-21, Inlet-21, VMW-1-21, and VMW-2-21 were qualified as estimated (J) because the concentrations exceeded the calibration range of the instrument. Both samples were reanalyzed and concentrations of carbon tetrachloride were within the calibration range in the more-diluted analyses.

The validator "hybridized" the less-diluted laboratory answer forms for Stack-21, Inlet-21, VMW-1-21, and VMW-2-21 to indicate the results recommended for use. The more-diluted laboratory answer forms were marked "Do Not Use" for clarity. The validator removed all "E" and "D" qualifiers applied by the laboratory to indicate a concentration that exceeded the calibration range and a result from a more-diluted analysis, respectively.

This validation effort is based on the data as provided by the laboratory. Software manipulation cannot be routinely detected during validation and is outside the scope of this review.

This validation report should be added to the data package for all future distributions of the TO-15 data reported in SDG 200-33397.

ATTACHMENT A LABORATORY ANALYTICAL DATA FORMS

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

STACK-21

Lab Sample ID:

200-33397-5

Client Matrix:

Air

Date Sampled: 05/02/2016 1344

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Methylene Chloride Chloroform

Carbon tetrachloride

Analysis Batch:

200-104374

Instrument ID:

CHG.i

Prep Method:

Summa Can

Prep Batch: 05/24/16

N/A

Lab File ID: Initial Weight/Volume:

19898_21.D 40 mL

Dilution: Analysis Date: 71.3, 143 esc 05/11/2016 0602

Final Weight/Volume: Injection Volume:

200 mL 200 mL

Prep Date:

Analyte Acetone 05/11/2016 0602

	Result (ppb v/v)	Qualifier	MDL	RL
7	360	U	61	360
	36	U	13	36
	180		5.8	14
	3700 3600	-E-	23 4.6	44- 29

Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	850	U	150	850
Methylene Chloride	120	U	45	120
Chloroform	900		29	70
Carbon tetrachloride	23000 22000	E.	44 29	00 180

ere 05/24/16

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

STACK-21 DL ese 05/24/16

Lab Sample ID:

200-33397-5

Client Matrix:

Air

Date Sampled: 05/02/2016 1344 Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:

TO-15

Summa Can

Analysis Batch: Prep Batch:

200-104488 N/A

Instrument ID: Lab File ID:

CHB.i 19959 07.D

Prep Method: Dilution:

143

05/12/2016 1513

Run Type:

Initial Weight/Volume: Final Weight/Volume:

MDL

120

26

12

4.6

MDL

20 mL 200 mL

Analysis Date:

DL

Injection Volume:

5 mL

RL

720

72

29

29

RL

1700

250

140

180

Prep Date:

05/12/2016 1513

Result (ppb v/v) Analyte 720 Acetone 72 Methylene Chloride 170 Chloroform 3600 Carbon tetrachloride

Result (ug/m3) Analyte 1700 Acetone 250 Methylene Chloride 840 Chloroform Carbon tetrachloride 22000

290 U U 1

Qualifier

Qualifier

U

U

0

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

INLET-21

Lab Sample ID:

200-33397-4

Client Matrix:

Air

Date Sampled: 05/02/2016 1334

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-104374

Instrument ID:

CHG.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

19898_20.D

Dilution: Analysis Date:

Carbon tetrachloride

834, 1580 es osla4/16 05/11/2016 0511

Final Weight/Volume: 200 mL

Initial Weight/Volume: 23 mL

Prep Date:

05/11/2016 0511

Injection Volume:

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	4200	U	720	4200
Methylene Chloride	420	U	150	420
Chloroform	2400		68	170
Carbon tetrachloride	40000 43006	돈	27 51	179 320
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	9900	U	1700	9900
Methylene Chloride	1400	U	520	1400
Chloroform	12000		330	810
Carbon tetrachloride	250000 A70000	£	170 320	1000 2000

Client: Ertec

Job Number: 200-33397-1 Sdg Number: 200-33397-1

en 05/24/16 INLET-21 DL

Client Sample ID:

200-33397-4 Lab Sample ID:

Client Matrix:

Air

Date Sampled: 05/02/2016 1334

Date Received: 05/04/2016 1030

TO-15 Volatile	Organic	Compounds	in	Ambient Air
10-15 Volatile	Organic	Compounds	111	WILLIAM WILL

Analysis Method:

TO-15

Analysis Batch: Prep Batch:

Run Type:

200-104447

Instrument ID:

CHC.i

Prep Method:

Summa Can

N/A

Lab File ID:

19939_26.D

Dilution:

1580

U

U

Initial Weight/Volume:

28 mL

Analysis Date:

05/12/2016 1025

DL

Final Weight/Volume:

MDL

1400

280

130

200 mL

Prep Date:

05/12/2016 1025

Injection Volume:

200 mL

RL

7900

790

320

320

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride Result (ppb v/v) 7900 790 2200 43000

11000

270000

Result (ug/m3) Ū 19000 2700

Qualifier D O

Qualifier

320

65/24/16

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

VMW-1-21

Lab Sample ID:

200-33397-1

Client Matrix:

Air

Date Sampled: 05/02/2016 1309

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch: 200-104374

Instrument ID:

CHG.i

Prep Method:

Summa Can

Prep Batch: 05/24/16

N/A

Lab File ID:

19898_17.D

Dilution: Analysis Date: 1750 , 2370

Initial Weight/Volume: 27 mL

05/11/2016 0238

Final Weight/Volume:

200 mL

Prep Date:

05/11/2016 0238

Injection Volume:

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	8800	Ú	1500	8800
Methylene Chloride	880	U	320	880
Chloroform	4600		140	350
Carbon tetrachloride	84000 72000	+	56- 7-L	0 FP 005
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Analyte Acetone	Result (ug/m3) 21000	Qualifier U	MDL 3600	RL 21000
Acetone				
	21000	U	3600	21000

en 05/24/16

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

VMW-1-21 DL en 05/24/16

Lab Sample ID:

200-33397-1

Client Matrix:

Аіг

Date Sampled: 05/02/2016 1309 Date Received: 05/04/2016 1030/

TO-15 Volatile	Organic	Compounds	in Ambie	nt Air

Analysis Method: TO-15 Prep Method:

Summa Can

Analysis Batch:

200-104447

Instrument ID:

Qualifier

Ü

U

CHC.i

Dilution:

2370

Prep Batch:

N/A

Lab File ID: Initial Weight/Volume:

MDL

2000

430

190

480

19939 24.D. 20 mL

Analysis Date: Prep Date:

05/12/2016 0838 05/12/2016 0838 Run Type:

DL

Result (ppb v/v)

Final Weight/Volume: 200 ml Injection Volume:

200 mL

RL

12000

1200

470

470

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Methylene Chloride

Carbon tetrachloride

Analyte

Acetone

Chloroform

28000

4100

Result (ug/m3)

76 MDL Qualifier 4800 1500 U

950

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

VMW-2-21

Lab Sample ID:

200-33397-2

Client Matrix:

Air

Date Sampled: 05/02/2016 1317

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:

TO-15

Analysis Batch:

200-104374

Instrument ID:

CHG.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

19898_18.D

Dilution:

1100, 1430 ene 05/24/16 Initial Weight/Volume: Final Weight/Volume:

26 mL

RL

5500

550

RL

13000

Analysis Date:

05/11/2016 0329

Injection Volume:

200 mL 200 mL

Prep Date:

Analyte

Acetone

Chloroform

05/11/2016 0329

MDL Result (ppb v/v) Qualifier 950 U 5500 200 550 U 90 2600 46000 42000

Æ

35 46

MDL

220 290 220

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Methylene Chloride

Carbon tetrachloride

Qualifier Result (ug/m3) 13000 Ū U 1900 13000 2900000 2600000 €

2200 690 440 220-290

1900 1100 1400 1800

me 05/24/16

Client: Ertec

Job Number: 200-33397-1 Sdg Nymber: 200-33397-1

Client Sample ID:

VMW-2-21 DL en 05/24/16

Lab Sample ID:

200-33397-2

Client Matrix:

Аіг

Date Sampled: 05/02/2016 1317

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: Prep Method:

TO-15 Summa Can Analysis Batch: Prep Batch:

200-104447

Instrument ID: Lab File ID:

CHC.i 19939_25.D

Dilution:

N/A

Initial Weight/Volume:

20 mL

Analysis Date:

1430 05/12/2016 0931

Run Type:

DL

Final Weight/Volume:

MDL

1200

200 mL

Prep Date:

05/12/2016 0931

Injection Volume:

200 mL

RL

Analyte Acetone Methylene Chloride Chloroform Carbon tetrachloride

Analyte Acetone Methylene Chloride Chloroform

Carbon tetrachloride

Result (ppb v/v) 7200 720 2300 42000

U U 10 Ø

Qualifier

260 120 46

MDL RL Qualifier Result (ug/m3) 17000 2900 Ú 17000 2500 2500 U 890 1400 10 570 11000 1800 0 290 260000

Page 17 of 646

Client: Ertec

Job Number: 200-33397-1

Sdg Number: 200-33397-1

Client Sample ID:

VMW-3C-21

Lab Sample ID:

200-33397-3

Client Matrix:

Air

Date Sampled: 05/02/2016 1326

Date Received: 05/04/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch: Prep Batch:

200-104374

Instrument ID:

CHG.i

Prep Method:

Summa Can

N/A

Lab File 1D:

Dilution:

19898_19.D

Analysis Date:

1020

Initial Weight/Volume: Final Weight/Volume:

29 mL

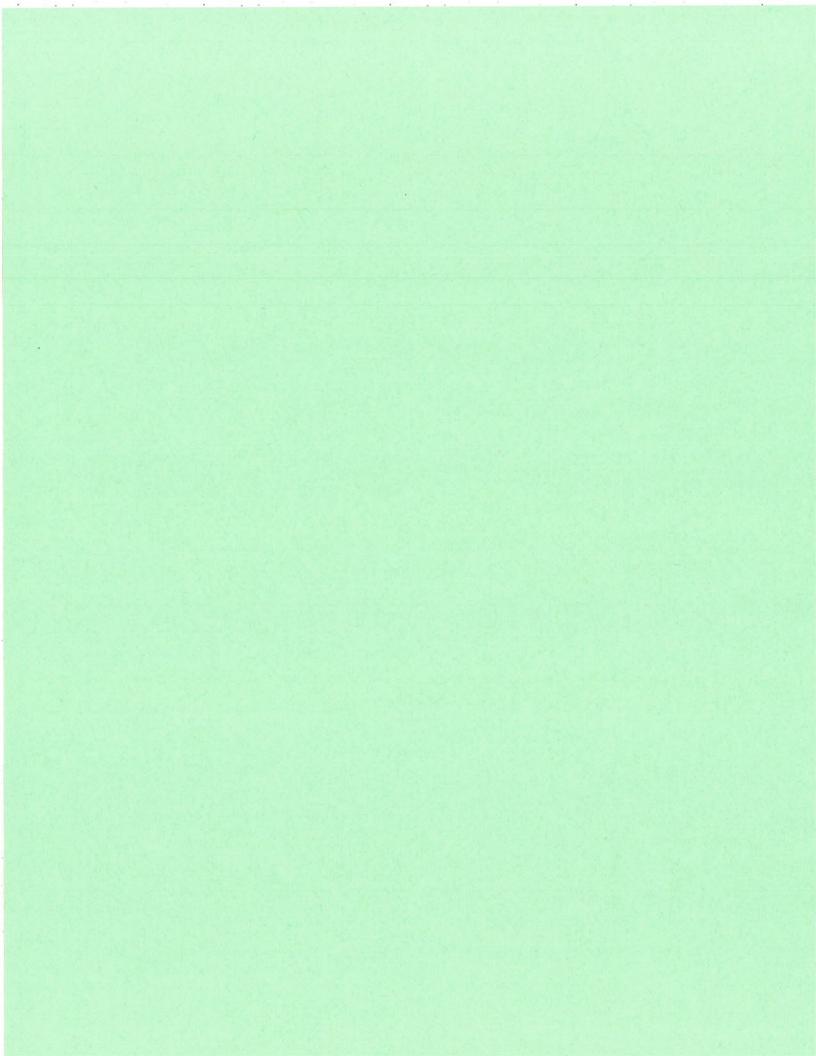
Prep Date:

05/11/2016 0420 05/11/2016 0420

Injection Volume:

200 mL 200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	5100	U	880	5100
Methylene Chloride	510	U	180	510
Chloroform	1900		84	200
Carbon tetrachloride	38000		33	200


Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	12000	U	2100	12000
Methylene Chloride	1800	U	640	1800
•	9100		410	1000
Chloroform	240000		210	1300
Carbon tetrachloride	240000		2.0	

ATTACHMENT B

EPA REGION II QUALIFIERS AND THEIR DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity; but the result may be biased high.
- J- The result is an estimated quantity; but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

July 6, 2016

Ms. Wanda Morales ERTEC Amur St. A - #5 Reparto Landrau Rio Piedras, PR 00921

RE: Data Validation Report for the SVE TO-15 Air Monitoring of the Pfizer Arecibo Site

Dear Wanda,

Enclosed is the validation report for the air samples collected on May 31, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-33799:

Stack-22	Inlet-22	SVE-A	
VMW-1-22	VMW-2-22	VMW-3C-22	
TB 053116	100.00		

The data package was received for validation on June 21, 2016. The validator did not add any qualifiers to the laboratory-reported results.

All samples were analyzed for acetone, methylene chloride, chloroform, and carbon tetrachloride in conformance with the specifications of USEPA Compendium Method TO-15. The validation effort was restricted to the reported results and supporting data for these compounds.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Ms. Wanda Morales July 6, 2016 Page 2 of 2

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

If you have any questions regarding this report, please give me a call at 225-355-0163 or contact me by e-mail at engrid@eden-env.com

Kindest regards,

Charlie E. Westerman, Ph.D.

Charlie & Westerman

Vice President

ANALYTICAL DATA VALIDATION

ERTEC JOB DESCRIPTION – PFIZER ARECIBO – SVE ERTEC JOB NUMBER –15-5384

ORGANIC ANALYSIS DATA

Prepared by: TestAmerica Laboratory, Burlington Vermont Sample Delivery Group: 200-33799 Selected Volatile Organic Compounds in Air Samples

VALIDATION REPORT

Prepared by: Eden Environmental, LLC Eden Project Number 13103

Date: June 6, 2016

INTRODUCTION

Enclosed is the validation report for the air samples collected on May 31, 2016, from the Pfizer Arecibo Site. The following samples were submitted to TestAmerica in Burlington, Vermont and were assigned to Sample Delivery Group (SDG) 200-33799:

Stack-22	Inlet-22	SVE-A
VMW-1-22	VMW-2-22	VMW-3C-22
TB 053116		

The data package was received for validation on June 21, 2016. The validator did not add any qualifiers to the laboratory-reported results.

Data validation was performed in conformance with the specifications of the EPA Region II Standard Operating Procedure (Volatile Organic Analysis of Air Contained in Canisters by Method TO-15," SOP HW-31 Revision 6, June, 2014). When necessary, professional judgment was applied and appropriately noted in the applicable section of the attached report. The validation effort for these data has the label Stage 4 Validation Manual (S4VM).

Anomalies detected during the validation effort (if any) are included in the appropriate section of the attached report. The Laboratory Analytical Data Forms with all qualifiers resulting from the validation effort (if any were necessary) are included in Attachment A. The EPA Region II qualifiers and their definitions are included in Attachment B.

I. Holding Times, Preservation, and Sample Integrity

All TO-15 analyses were performed within holding time. A copy of the Laboratory Login Sample Receipt Checklist noted that all samples were received in good condition with custody seals intact. Copies of the chain of custody records were also present in the data package and included all of the samples in this data set. Therefore, all requirements for holding times and sample integrity were met. No physical preservation requirements are specified for Summa® canisters.

II. GC/MS Instrument Performance Checks

Results were reported for two bromofluorobenzene (BFB) instrument performance checks. Requirements for both instrument performance checks were met.

III. Calibration

These samples were analyzed on a single gas chromatography/mass spectrometry (GC/MS) system identified as "CHW." No evidence was presented in the data package to indicate that manual integrations were performed on any of the project-specified target compounds or on any of the internal standards in any of the calibration standards.

A. Initial Calibration (IC) and Initial Calibration Verification (ICV)

ICs were established on May 16, 2016. An ICV was analyzed following the IC. EPA Region II-specified acceptance criteria were met for all of these standards.

B. Continuing Verification (CV)

Documentation of a CV standard associated with the site sample analyses was present in the data package. All EPA Region II-specified acceptance criteria was met for this standard.

IV. Blanks

A laboratory blank was analyzed in the analytical sequence containing the site samples. No project-specified target analytes were detected in the laboratory blank.

A trip blank (TB 053116) was submitted with the samples in this data set. No project-specified target analytes were detected in TB 053116.

V. Surrogate Recoveries

The use of a surrogate compound is not addressed in Method TO-15. A surrogate compound was not employed in the analyses of these samples.

VI. Laboratory Check Standard (Audit Accuracy Standard)

A 10 ppbv laboratory check standard (identified as LCS) was analyzed in the analytical sequence containing the reported samples. The LCS was spiked with all of the project-specified target analytes each at 10 ppb v/v. All recoveries of the target analytes were within the quality control limits specified by the validation guidance document (70-130%).

VII. Laboratory Replicate Analyses

Stack-22 was analyzed as a laboratory replicate. Reproducibility between positively paired results for chloroform (3 relative percent difference [RPD]) and carbon tetrachloride (1 RPD) was within the laboratory-specified acceptance limits (≤25 RPD). Acetone and methylene chloride were not detected in either analysis of this sample; therefore, no further quantitative evaluation of precision could be made from these data.

VIII. Field Duplicates

Collection of true field duplicates is not feasible for air samples; therefore, a better description of these quality control samples would be co-located samples. The validation guidance document does not provide an acceptance criterion for RPDs between reported concentrations in "field duplicate" samples. For the purpose of this validation effort, a maximum acceptance limit of 100 RPD was used to define acceptable agreement between reported results in the co-located samples. Results with RPD values greater than 100 RPD should be used with caution as the concentration and source of these compounds in the reported samples is uncertain.

SVE-A was collected as a co-located sample of Inlet-22. Reproducibility between positively paired results for chloroform (4) and carbon tetrachloride (3 RPD) were acceptable. Acetone and methylene chloride were not detected in either analysis of this sample; therefore, no further quantitative evaluation of precision could be made from these data.

IX. Internal Standard Performance

The validator confirmed that the areas and retention times of all three internal standards were within the method-specified acceptance limits for the reported site and quality control analyses.

X. Target Compound Identification

When detected, the target analyte was correctly identified with acceptable supporting mass spectral data present in the data package.

XI. Compound Quantitation and Reporting Limits (RLs)

All sample results and RLs were correctly calculated and accurately reported, including adjustments for dilutions, where necessary.

A RL of ≤0.50 ppbv is a required performance criterion for this project. The low concentration standards in the IC were 0.50 ppbv for methylene chloride, 0.20 ppbv for chloroform, and 0.04 ppbv for carbon tetrachloride. The unadjusted RLs are equivalent to or higher than the low concentration standard used to establish the IC and are supported by the reported data.

The low concentration IC standard for acetone was 5.0 ppbv, which is also the RL used for this analyte and supported by the reported data. The RL for acetone does not meet the performance criterion for this project, but does reflect the best efforts of the laboratory.

XII. Tentatively Identified Compounds (TICs)

Library searches were not requested for these samples.

XIII. Documentation

Copies of the chain of custody records were provided in the data package. The following chain of custody issues were noted:

A notation was included on the chain of custody records indicating the samples were held in a secure location prior to shipment to the laboratory on June 1, 2016.

The laboratory "samples received by" signature is illegible.

All of the laboratory sample receipt information was provided on the laboratory-generated Login Sample Receipt Checklist, which confirmed that all samples were properly documented and shipped in custody sealed containers.

A copy of the FedEx airbill was included in the data package to document the transfer of the samples from the field to the laboratory.

The Laboratory Analytical Data Forms also include a column identified as MDL. Unadjusted MDLs for the target compounds are not supported by the data as received. Therefore, it is recommended that the RLs rather than the MDLs be used as the lowest supported limit of detection.

XIV. Overall Assessment

The laboratory performed well. The validator did not apply any qualifiers to the laboratory-reported results.

This validation effort is based on the data as provided by the laboratory. Software manipulation cannot be routinely detected during validation and is outside the scope of this review.

This validation report should be added to the data package for all future distributions of the TO-15 data reported in SDG 200-33799.

ATTACHMENT A LABORATORY ANALYTICAL DATA FORMS

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

STACK-22

Lab Sample ID:

200-33799-6

Client Matrix:

Аіг

Date Sampled: 05/31/2016 1505

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

Dilution:

304

20276_21.d

Analysis Date:

Initial Weight/Volume:

36 mL

06/04/2016 0346

Final Weight/Volume:

200 mL

Prep Date:

06/04/2016 0346

Injection Volume:

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	1500	U	260	1500
Methylene Chloride	150	U	55	150
Chloroform	230		25	61
Carbon tetrachloride	5100		9.7	61
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	3600	U	620	3600
Methylene Chloride	530	U	190	530
Chloroform	1100		120	300
Carbon tetrachloride	32000		61	380

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

INLET-22

Lab Sample ID:

200-33799-4

Client Matrix:

Air

Date Sampled: 05/31/2016 1453

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

20276_19.d

Dilution:

1950

320000

23 mL

Analysis Date:

Initial Weight/Volume: Final Weight/Volume:

390

200 mL

Carbon tetrachloride

06/04/2016 0206

Prep Date:
rep Date.

06/04/2016 0206

Injection Volume:

200 mL

2500

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	9800	U	1700	9800
Methylene Chloride	980	U	350	980
Chloroform	2400		160	390
Carbon tetrachloride	51000		62	390
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	23000	U	4000	23000
Methylene Chloride	3400	U	1200	3400
Chloroform	12000		780	1900

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

SVE-A

Lab Sample ID:

200-33799-5

Client Matrix:

Аіг

Date Sampled: 05/31/2016 1456

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:

TO-15

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Prep Method: Dilution:

Summa Can

Prep Batch:

N/A

Lab File ID:

20276_20.d

1750

Final Weight/Volume:

Initial Weight/Volume:

25 mL 200 mL

Analysis Date: Prep Date:

Acetone

Chloroform

06/04/2016 0256 06/04/2016 0256

Injection Volume:

200 mL

rich Date.	·
Analyte	

Methylene Chloride

Result (ppb v/v) 8800 880 2300

320 140 56

MDL

1500

RL

8800

880

350

Carbon tetrachic	ride
Analyte	
A 4	

Acetone Methylene Chloride Chloroform Carbon tetrachloride 49000 Result (ug/m3) 21000

3000

11000

310000

Qualifier

Qualifier

U

350 MDL RL 21000 3600

U 1100 3000 700 1700 350 2200

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

VMW-1-22

Lab Sample ID:

200-33799-1

Client Matrix:

Date Sampled: 05/31/2016 1427

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Amb	ient Air
---	----------

Analysis Method: TO-15

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Prep Method:

Summa Can

Prep Batch:

Lab File ID:

20276_16.d

Dilution:

2410

N/A

Initial Weight/Volume: 45 mL

Analysis Date:

06/03/2016 2336

Final Weight/Volume:

200 mL

Prep Date: 06/03/2016	2336	Injection Volume: 200 mL			
Analyte	Result (ppb v/v)	Qualifier	MDL	RL	
Acetone	12000	Ú	2100	12000	
Methylene Chloride	1200	Ü	430	1200	
Chloroform	3700		200	480	
Carbon tetrachloride	68000		77	480	
Analyte	Result (ug/m3)	Qualifier	MDL	RL	
Acetone	29000	U	4900	29000	
Methylene Chloride	4200	U	1500	4200	
Chloroform	18000		960	2400	
Carbon tetrachloride	430000		490	3000	

Job Number: 200-33799-1 Client: Ertec

Sdg Number: 200-33799-1

Client Sample ID: VMW-2-22

200-33799-2 Lab Sample ID:

Client Matrix:

Air

Date Sampled: 05/31/2016 1435

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Prep Method:

Summa Can

1900

Analysis Batch: Prep Batch:

200-105285

N/A

Instrument ID:

CHW.i

Lab File ID: Initial Weight/Volume: 57 mL

20276_17.d

Final Weight/Volume:

200 mL

Analysis Date: Prep Date:

Dilution:

06/04/2016 0026 06/04/2016 0026

Injection Volume:

200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	9500	U	1600	9500
Methylene Chloride	950 3000	U	340 160	950 380
Chloroform Carbon tetrachloride	53000		61	380
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	23000	U	3900	23000
Methylene Chloride	3300	U	1200	3300
Chloroform	15000		760	1900
Carbon tetrachloride	330000		380	2400

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

VMW-3C-22

Lab Sample ID:

200-33799-3

Client Matrix:

Air

Date Sampled: 05/31/2016 1444

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Prep Method:

Summa Can

Prep Batch:

N/A

Lab File ID:

Dilution:

20276_18.d

Analysis Date:

1420

Initial Weight/Volume: 30 mL

Prep Date:

06/04/2016 0116 06/04/2016 0116

Final Weight/Volume: Injection Volume:

200 mL 200 mL

Result (ppb v/v)	Qualifier	MDL	RL
7100		1200	7100
710	U	260	710
1900		120	280
45000		45	280
Result (ug/m3)	Qualifier	MDL	RL
	710 1900	7100 U 710 U 1900 45000	7100 U 1200 710 U 260 1900 120 45000 45

2900 17000 U 17000 Acetone Ū 2500 890 2500 Methylene Chloride 1400 570 9300 Chloroform 1800 290 280000 Carbon tetrachloride

Client: Ertec

Job Number: 200-33799-1

Sdg Number: 200-33799-1

Client Sample ID:

TB 053116

Lab Sample ID:

200-33799-7

Client Matrix:

Air

Date Sampled: 05/31/2016 0000

Date Received: 06/02/2016 1030

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Prep Method:

Analysis Batch:

200-105285

Instrument ID:

CHW.i

Summa Can

Prep Batch:

Lab File ID:

20276_23.d

Dilution:

1.0

N/A

Initial Weight/Volume:

200 mL

Analysis Date: Prep Date:

06/04/2016 0529 06/04/2016 0529

Final Weight/Volume: Injection Volume:

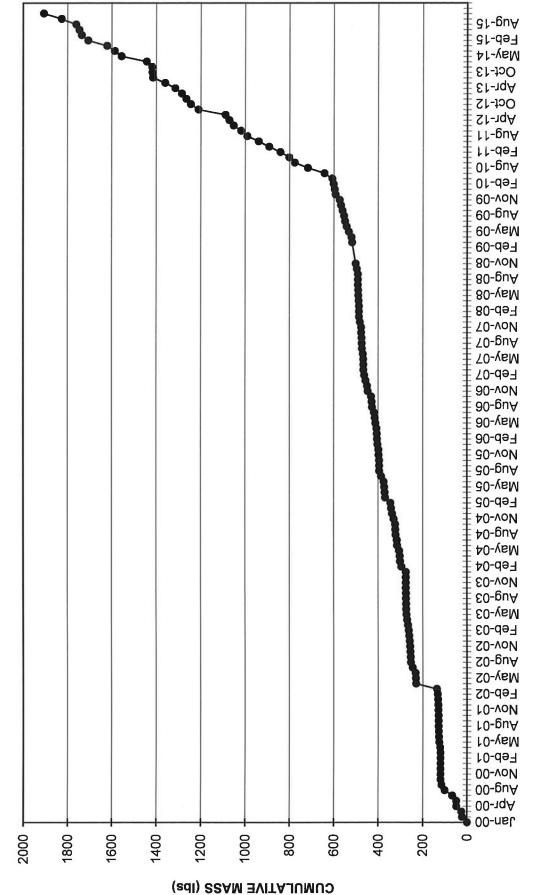
200 mL 200 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	5.0		0.86	5.0
Methylene Chloride	0.50	U	0.18	0.50
Chloroform	0.20	Ü	0.082	0.20
Carbon tetrachloride	0.20	Ü	0.032	0.20
Analyte	Result (ug/m3)	Qualifier	MDL	RL
Acetone	12	U	2.0	12
Methylene Chloride	1.7	U	0.63	1.7
Chloroform	0.98	U	0.40	0.98
Carbon tetrachloride	1.3	U	0.20	1.3

ATTACHMENT B

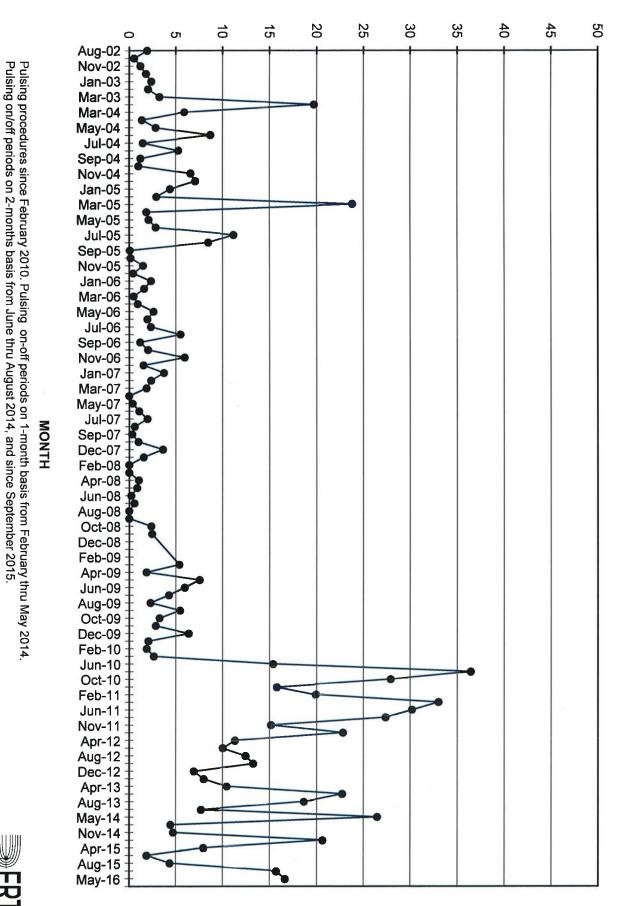
EPA REGION II QUALIFIERS AND THEIR DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity; but the result may be biased high.
- J- The result is an estimated quantity; but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.


APPENDIX 4

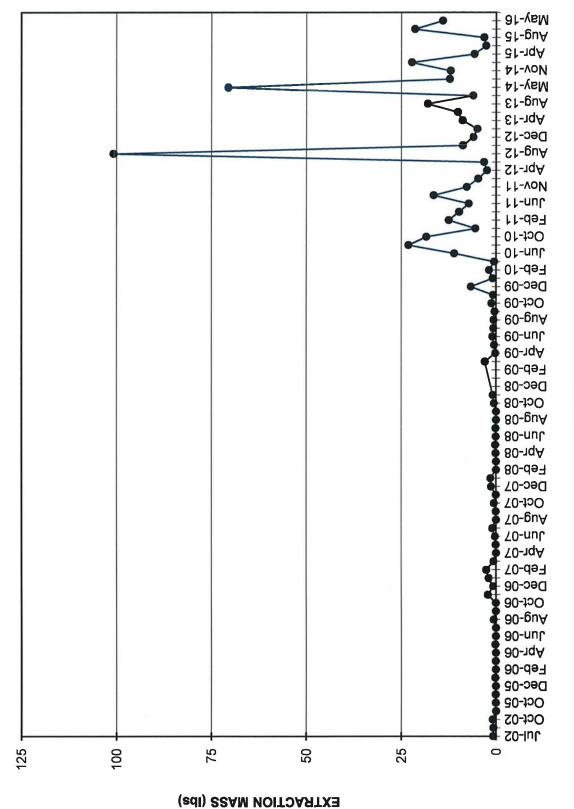
TOTAL VOCs CUMULATIVE MONTHLY EXTRACTION

SVE PULSING OPERATIONS PROGRESS REPORT NO. 11
FEBRUARY TO MAY 2016
PFIZER PHARMACEUTICALS LLC
ARECIBO, PUERTO RICO
ERTEC JOB NO. E155384



DATE

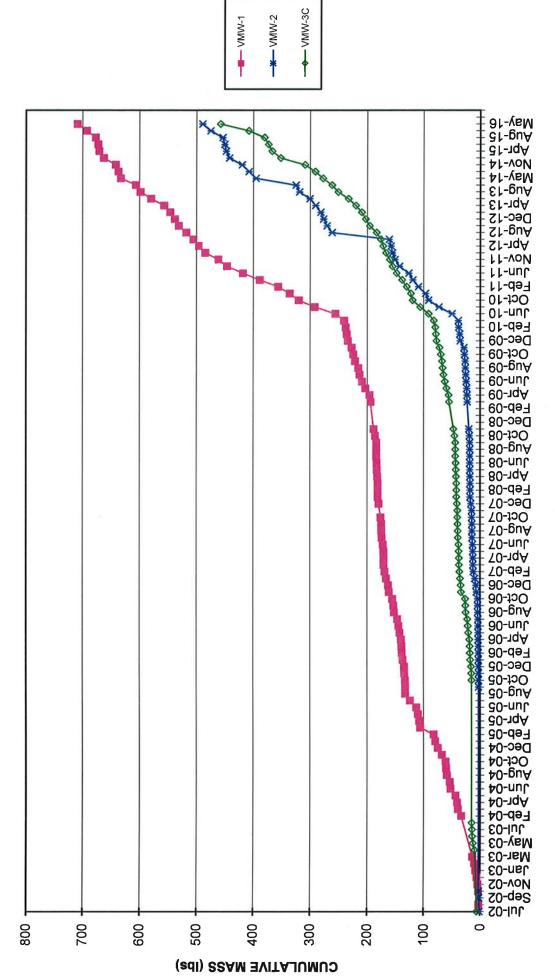
Pulsing procedures since February 2010. Pulsing on-off periods on 1-month basis from February thru May 2014. Pulsing on/off periods on 2-months basis from June thru August 2014, and since September 2015.


EXTRACTION MASS (Ibs)

VMW-1 (150 FEET) TOTAL VOCs MONTHLY EXTRACTION


VMW-2 (170 FEET) TOTAL VOCS MONTHLY EXTRACTION

MONTH



MONTH

Pulsing procedures since February 2010. Pulsing on-off periods on 1-month basis from February thru May 2014. Pulsing on/off periods on 2-months basis from June thru August 2014 and since September 2015.

VMW-1 (150 FEET), VMW-2 (170 FEET) AND VMW-3C (195 FEET) TOTAL VOCS CUMULATIVE EXTRACTION

MONTH

Pulsing procedures since February 2010. Pulsing on-off periods on 1-month basis from February thru May 2014. Pulsing on/off periods on 2-months basis from June thru August 2014, and since September 2015.

